This subject is designed to inform students on the analytical foundations of …
This subject is designed to inform students on the analytical foundations of inviscid subsonic aerodynamics. A primary goal of this subject is to equip students with the scientific rigor, applied mathematical complexity, and physical understanding that form the foundation of classical subsonic aerodynamics. Perturbation methods that both simplify mathematical complexity and expand physical understanding of critical phenomenon in fluid flow provides a framework for the subject. The subject offers lectures in classical subsonic aerodynamics at the graduate level on inviscid, subsonic, steady flow over slender aerodynamic bodies. Topics will be selected from: fundamentals of fluid mechanics [review]; singular-perturbation methods [introduction, JIT]; similitude; subsonic flows with axial symmetry; linearized subsonic flow; slender body theory; similarity rules for subsonic flows; two-dimensional flow past a wave-shaped wall; thin wing theory; Kaplan’s higher approximations.
In this activity, students discover the relationship between an object's mass and …
In this activity, students discover the relationship between an object's mass and the amount of space it takes up (its volume). Students learn about the concept of displacement and how an object can float if it displaces enough water, and the concept of density and its relationship to mass and volume.
Students develop an app for an Android device that utilizes its built-in …
Students develop an app for an Android device that utilizes its built-in internal sensors, specifically the accelerometer. The goal of this activity is to teach programming design and skills using MIT's App Inventor software (free to download from the Internet) as the vehicle for learning. The activity should be exciting for students who are interested in applying what they learn to writing other applications for Android devices. Students learn the steps of the engineering design process as they identify the problem, develop solutions, select and implement a possible solution, test the solution and redesign, as needed, to accomplish the design requirements.
This book is designed for use in an introductory course on digital …
This book is designed for use in an introductory course on digital logic design, typically offered in computer engineering, electrical engineering, computer science, and other related programs. Such a course is usually offered at the sophomore level. This book makes extensive use of animation to illustrate the flow of data within a digital system and to step through some of the procedures used to design and optimize digital circuits.
This article includes links to expository text for students in grades K-1, …
This article includes links to expository text for students in grades K-1, 2-3, and 4-5 about the climate differences between the Arctic and Antarctica.
Antimatter, the charge reversed equivalent of matter, has captured the imaginations of …
Antimatter, the charge reversed equivalent of matter, has captured the imaginations of science fiction fans for years as a perfectly efficient form of energy. While normal matter consists of atoms with negatively charged electrons orbiting positively charged nuclei, antimatter consists of positively charged positrons orbiting negatively charged anti-nuclei. When antimatter and matter meet, both substances are annihilated, creating massive amounts of energy. Instances in which antimatter is portrayed in science fiction stories (such as Star Trek) are examined, including their purposes (fuel source, weapons, alternate universes) and properties. Students compare and contrast matter and antimatter, learn how antimatter can be used as a form of energy, and consider potential engineering applications for antimatter.
This final lesson in the unit culminates with the Go Public phase …
This final lesson in the unit culminates with the Go Public phase of the legacy cycle. In the associated activities, students use linear models to depict Hooke's law as well as Ohm's law. To conclude the lesson, students apply they have learned throughout the unit to answer the grand challenge question in a writing assignment.
This on-line textbook serves as an introduction to electrical engineering concepts and …
This on-line textbook serves as an introduction to electrical engineering concepts and applications for non- electrical & computer engineering majors. This text was written to accompany the course ECE361 – Fundamentals of Electrical Engineering at the University of Massachusetts at Amherst. This is a required course for undergraduate mechanical, biomedical, and industrial engineering majors, and students from computer science, physics, art, and other academic majors have also taken the course.
The course provides students with vocabulary and electrical/electronics analysis and design concepts in order to help them work in multi-disciplined teams designing engineered systems in their professional careers. The course also provides a practical introduction to electronics that should enable students to experiment with electronics in their own right as well as provide a foundation for further study in electronics. The underlying pedagogical construct behind this book is based on this idea: in order to design, we need to understand the theory, from the big picture down to the details; we also need practice and confidence. This book introduces a set of electrical/electronics topics theoretically and provides the usual pencil and paper problems to practice the theory. This is followed by a series of hands-on experiments designing, building and testing circuits. These circuit experiments are designed to help students reinforce, make sense of, and gain confidence in their of learning of the theory. The experiments involve circuits that blink, beep, buzz, detect the environment, spin motors, steer tiny cars, run software and interface to the external world. Learning about and building things with electronics can be, and should be, enjoyable. This text, therefore, takes an approach that is intended to make learning about electrical engineering fundamentals fun.
Short Description: This lab manual provides students with the theory, practical applications, …
Short Description: This lab manual provides students with the theory, practical applications, objectives, and laboratory procedure of ten experiments. The manual also includes educational videos showing how student should run each experiment and a workbook for organizing data collected in the lab and preparing result tables and charts.
Long Description: Basic engineering knowledge about fluid mechanics is required in various sectors of water resources engineering, such as designing hydraulic structure on any riverine environments and flood mitigation process. The objective of this book is to enable students to understand fundamental concepts in the field of fluid mechanics and apply those concepts in practice. Applied Fluid Mechanics Lab Manual is designed to enhance civil engineering students’ understanding and knowledge of experimental methods and basic principles of fluid mechanics. The ten experiments in this lab manual provide an overview of widely used terms and phenomena of fluid mechanics and open channel flow, which are required for solving engineering problems.
Word Count: 21988
ISBN: 978-1-64816-997-7
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental …
Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental definitions, equations, practice problems and engineering applications are supplied. A PowerPoint® presentation, practice problems and grading rubric are provided.
Students explore the interface between architecture and engineering. In the associated hands-on …
Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.
In this middle school and high school unit, students engage with 360° …
In this middle school and high school unit, students engage with 360° virtual reality tours, authentic Arctic datasets, and app-based labs to construct models and explanations for the unit driving question, "Why might the Arctic be warming twice as fast as the rest of the world?"
This issue of the free online magazine, Beyond Penguins and Polar Bears, …
This issue of the free online magazine, Beyond Penguins and Polar Bears, explores the amazing birds that live in or migrate to the polar regions. The issue was co-produced with the Cornell Lab of Ornithology. In addition to content knowledge articles and lesson plans, the issue includes information about bird-themed citizen science programs from the Cornell Lab of Ornithology.
This article assembles free resources from the Arctic and Antarctic Birds issue …
This article assembles free resources from the Arctic and Antarctic Birds issue of the Beyond Penguins and Polar Bears cyberzine into a unit outline based on the 5E learning cycle framework. Outlines are provided for Grades K-2 and 3-5.
Brush up on your multiplication, division, and factoring skills with this interactive …
Brush up on your multiplication, division, and factoring skills with this interactive multiplication chart. Three levels and timed or untimed options are available.
This course introduces students to the basic knowledge representation, problem solving, and …
This course introduces students to the basic knowledge representation, problem solving, and learning methods of artificial intelligence. Upon completion of 6.034, students should be able to develop intelligent systems by assembling solutions to concrete computational problems; understand the role of knowledge representation, problem solving, and learning in intelligent-system engineering; and appreciate the role of problem solving, vision, and language in understanding human intelligence from a computational perspective.
Students learn how forces are used in the creation of art. They …
Students learn how forces are used in the creation of art. They come to understand that it is not just bridge and airplane designers who are concerned about how forces interact with objects, but artists as well. As "paper engineers," students create their own mobiles and pop-up books, and identify and use the forces (air currents, gravity, hand movement) acting upon them.
This course teaches simple reasoning techniques for complex phenomena: divide and conquer, …
This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.
The purpose of this learning video is to show students how to …
The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.