When we hear the word radiation, it’s tempting to picture huge explosions …
When we hear the word radiation, it’s tempting to picture huge explosions and frightening mutations. But that’s not the full story — radiation also applies to rainbows and a doctor examining an X-ray. So what is it, really, and how much should we worry about its effects? Matt Anticole describes the different types of radiation.Lect
Students gain first-hand experience with the steps of the scientific method as …
Students gain first-hand experience with the steps of the scientific method as well as the overarching engineering design process as they conduct lab research with the aim to create a bioplastic with certain properties. Students learn about the light mechanism that causes ultraviolet bead color change, observe the effect of different light waves on a phosphorescence powder, and see the connection between florescence, phosphorescence and wavelength. Students compose hypotheses and determine experimental procedure details, as teams engineer variations on a bioplastic solid embedded with phosphorescence powder. The objective is to make a structurally sound bioplastic without reducing its glowing properties from the powder embedded within its matrix. Groups conduct qualitative and quantitative analyses of their engineered plastics, then recap and communicate their experiment conclusions in the form of a poster, slides and verbal presentation. As an extension, teams make their own testing apparatuses. As a further extension, they combine all the group results to determine which bioplastic matrix best achieves the desired properties and then “manufacture” the optimum bioplastic into glowing toy figurine end products! Many handouts, instructions, photos and rubrics are provided.
Students learn and use the properties of light to solve the following …
Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"
Students learn the basic properties of light the concepts of light absorption, …
Students learn the basic properties of light the concepts of light absorption, transmission, reflection and refraction, as well as the behavior of light during interference. Lecture information briefly addresses the electromagnetic spectrum and then provides more in-depth information on visible light. With this knowledge, students better understand lasers and are better prepared to design a security system for the mummified troll.
In order to understand how we study the universe, we need to …
In order to understand how we study the universe, we need to talk a little bit about light. Light is a form of energy. Its wavelength tells us its energy and color. Spectroscopy allows us to analyze those colors and determine an object’s temperature, density, spin, motion, and chemical composition.
Chapters: Introduction Light is a Wave Electromagnetic Spectrum How is Light Made? Atomic Structure Spectroscopy Redshift vs Blueshift Review
Through an introduction to the design of lighting systems and the electromagnetic …
Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.
Students are introduced to the correct technical vocabulary for lighting, which is …
Students are introduced to the correct technical vocabulary for lighting, which is different than layperson's terms. They learn about lamp (light bulb) technology and how to identify the various types of lighting in their spaces. They are also introduced to lighting controls as a means for saving energy- reducing costs, human energy consumption, and greenhouse gas emissions on the environment. Using an accompanying worksheet, students embark on a guided audit in which they survey the lighting in their classroom and identify the potential savings from using controls.
How do microwaves heat up your coffee? Adjust the frequency and amplitude …
How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.
Dieter Hartmann, a high-energy physicist, presents a story-based lesson on the science …
Dieter Hartmann, a high-energy physicist, presents a story-based lesson on the science of Gamma-Ray astronomy. The lesson focuses on gamma-ray bursts; examining their sources, types, and links to the origin and evolution of the Universe. The story-based format of the lesson also provides insights into the nature of science. Students answer questions based on the reading guide. A list of supplemental websites is also included.
This is a course for non-science majors that is a survey of …
This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a law of nature; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.
In this lesson, students learn that light travels in a straight line …
In this lesson, students learn that light travels in a straight line from a light source and that ray diagrams help us understand how an image will be created by a lens. In the accompanying activity, students explore the concepts behind the workings of a pinhole camera.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to:Describe important …
By the end of this section, you will be able to:Describe important physical features of wave formsShow how physical properties of light waves are associated with perceptual experienceShow how physical properties of sound waves are associated with perceptual experience
This article describes the energy that radiates from the sun, the concept …
This article describes the energy that radiates from the sun, the concept of albedo, Earth's radiation budget, and the effect of decreasing albedo on Earth's climate.
Students are provided with an understanding of sound and light waves through …
Students are provided with an understanding of sound and light waves through a "sunken treasure" theme a continuous storyline throughout the lessons. In the first five lessons, students learn about sound, and in the rest of the lessons, they explore light concepts. To begin, students are introduced to the concepts of longitudinal and transverse waves. Then they learn about wavelength and amplitude in transverse waves. In the third lesson, students learn about sound through the introduction of frequency and how it applies to musical sounds. Next, they learn all about echolocation what it is and how engineers use it to "see" things in the dark or deep underwater. The last of the five sound lessons introduces acoustics; students learn how different materials reflect and absorb sound.
What happens when an excited atom emits a photon? What can we …
What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:
Student groups rotate through four stations to examine light energy behavior: refraction, …
Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.
Students participating in Storm Signals play a critical role in the overall …
Students participating in Storm Signals play a critical role in the overall process of the Student Observation Network (S.O.N.). They are able to confirm the predictions of the Sunspotter's Sunspot Suspect, and they will predict magnetic storms around Earth, issuing Space Weather alerts that tell other students to begin monitoring the Magnetosphere for magnetic storms. By collecting and analyzing real-time data from their radio antennas, professional observatories, and NASA satellites, they can carry out the same duties as NASA researchers! The Space Weather alerts issued by the Space Environment Center (SEC) of NOAA (National Oceanographic and Atmospheric Administration) are essential to protect satellites, power grids and astronauts.
In Storm Signals you will learn:
1. How to instruct students in the construction of a simple device to detect radio emissions from the Sun.
2. How to enable students to obtain and interpret radio emissions from ground-based professional observatories.
3. How to enable students to obtain and interpret radio, x-ray and ultraviolet emissions from NASA satellites.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.