An interactive lecture demonstration intended to help students use physics reasoning to …
An interactive lecture demonstration intended to help students use physics reasoning to predict the outcome of a puzzling electrostatics demonstration.
In this activity, students are presented with two objects that have different …
In this activity, students are presented with two objects that have different constant speeds and that will race each other. The students must determine which object will win the race, as well as either how much time elapses between the objects crossing the finish line.
This is an activity on apparent sizes and apparent angles, related to …
This is an activity on apparent sizes and apparent angles, related to understanding how distance affects what we observe in outer space (the sun, moon, stars, or planets).
This is a teacher demonstration used to show an example of kinetic …
This is a teacher demonstration used to show an example of kinetic molecular energy using food coloring and water. The students are also given opportunity to develop their own questions and tests.
An activity in which students use dice to explore radioactive decay and …
An activity in which students use dice to explore radioactive decay and dating and make simple calculations.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a teacher demonstration used to show an example of kinetic …
This is a teacher demonstration used to show an example of kinetic molecular energy using food coloring and water. The students are also given opportunity to develop their own questions and tests.
This activity has students make small cuts in processed cheese food and …
This activity has students make small cuts in processed cheese food and then apply shear stress perpendicular or parallel to the cuts to see what sort of fracturing will occur.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Compiled by Kyle Gray, University of Akron, 'krg10@uakron.edu' and David N. Steer, …
Compiled by Kyle Gray, University of Akron, 'krg10@uakron.edu' and David N. Steer, University of Akron, 'steer@uakron.edu'
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
David N. Steer (steer@uakron.edu)and Kyle Gray (krg10@uakron.edu), University of Akron
This material is based upon work supported by the National Science Foundation under Grant No. GEO-0506518.
This towing lab students use a active learning activity to develop planning, …
This towing lab students use a active learning activity to develop planning, problem solving and conceptual skills to clarify understanding of applied and net force. The assessment is the correct composition of a vector diagram.
Students learn the basic relationship of Snell's Law, practice applying it to …
Students learn the basic relationship of Snell's Law, practice applying it to a situation, then are given another situation where it "doesn't work."??? This situation turns out to be one in which total internal reflection occurs. Students are then shown what happens with classroom apparatus.
This activity is a hands-on modeling of the effects of pollution on …
This activity is a hands-on modeling of the effects of pollution on our ground and surface water. Students will observe and record their observations as pollution is placed on the ground in their model and it is rained upon.
Roger Steinberg, Department of Natural Sciences, Del Mar College 5000 Dots by …
Roger Steinberg, Department of Natural Sciences, Del Mar College 5000 Dots by Computer (Click image to enlarge and download.)
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity is a teacher demonstration of an ice cream model representing …
This activity is a teacher demonstration of an ice cream model representing glacier movement across Minnesota. Teacher/student questions and discussion should be encouraged during the demonstration.
While working in groups to facilitate peer tutoring, students use samples of …
While working in groups to facilitate peer tutoring, students use samples of four igneous rocks (gabbro, basalt, granite, and rhyolite) to observe differences in texture, color and grain size and make inferences about the relative cooling histories and silica content associated with each magma type.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
David Steer (steer@uakron.edu) and Kyle Gray (krg10@uakron.edu), University of Akron
This material is based upon work supported by the National Science Foundation under Grant No. GEO-0506518.
A toddler wading pool or similar tank is filled with common sand …
A toddler wading pool or similar tank is filled with common sand (available from home improvement stores in bags) to a depth of 15-20 cm. The sand is saturated with a slow inflow and outflow to a floor drain. A 2-inch PVC slotted screen section is buried in the sand near the center of the tank with a capped end at the bottom. Small (1 cm diameter or similar) slotted or perforated PVC or copper tubing are placed as piezometers in the sand at short distances (e.g., 10-20 cm) from the pumping "well." A fountain pump capable of discharging up to 100-150 ml/min is placed within the "well" with adequate discharge tubing to conduct the water to a drain. A stopcock is placed in the tubing to control flow. Alternatively, if the tank of sand is on a very sturdy table, a simple siphon with tubing can be used as a pump. Drawdown is determined by the difference between a pre-pumping level measurement from the top of the "piezometers" and subsequent measurements made in the same "piezometer" at times after pumping starts. Water levels may be measured using chalked wooden rods. Alternatively, a small cork with a slender wooded food skewer marked in millimeter increments can be placed in each piezometers and the students can watch the change in level of the markings relative to the top of the "piezometer." Flow is repeatedly measured using a graduated cylinder. At the start of the test, students or teams of students are assigned to either take water level measurements at a specific piezometer or to measure and control the flow rate. The data are collected on a logarithmically increasing time interval for about an hour. The flow and drawdown data are analyzed by various means (Theis curve, Jacob straight-line method, Bolton curves, etc.) either manually or using AQTESOLV or similar software. Though the drawdowns are small, the data have provided quite reasonable estimates of hydraulic conductivity for the sand.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Interactive learning is becoming increasingly important as the world and its demands …
Interactive learning is becoming increasingly important as the world and its demands continue to change. This approach to education provides many advantages for both students and educators. By promoting engagement, supporting collaboration, personalizing learning experiences, utilizing technology, and developing critical thinking skills, this educational method equips students with the necessary tools to succeed in the 21st-century workforce. Please email me at interactivelearning2288@gmail.com to receive a copy of my book that contains all 14 units. Please allow me several days to respond.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.