In this project, you will explore a real-world problem, and then work …
In this project, you will explore a real-world problem, and then work through a series of steps to analyze that problem, research ways the problem could be solved, then propose a possible solution to that problem. Often, there are no specific right or wrong solutions, but sometimes one particular solution may be better than others. The key is making sure you fully understand the problem, have researched some possible solutions, and have proposed the solution that you can support with information / evidence.Begin by reading the problem statement in Step 1. Take the time to review all the information provided in the statement, including exploring the websites, videos and / or articles that are linked. Then work on steps 2 through 8 to complete this problem-based learning experience.
Cells are the fundamental unit of all living things; however, there are …
Cells are the fundamental unit of all living things; however, there are many different types of cells. Students often look at the world with a concrete, inflexible view, knowing only what they see with their eyes. Life is diverse and different, and you will be challenged as you investigate life that is different from you. For this experience, we focus on one of the two major divisions of cells called Prokaryotic Cells. These cells are considered primitive compared to the cells that make up humans. Learners will explore various types of prokaryotic cells and reflect on how they relate to their cell functions.StandardsBIO.A.1.2.1 Compare cellular structures and their functions in prokaryotic and eukaryotic cells
Students explore the applications of quantum dots by researching a journal article …
Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Phosphatidylserine (PS) is a fatty substance normally located on the inner membrane of healthy cells, but cancer cells tend to express high levels of PS on their surface. That tiny difference has paved the way for a new cancer-targeting agent called SapC-DOPS. SapC-DOPS is a nanovesicle that effectively targets and kills several types of cancer, including pancreatic, lung, brain, and pediatric cancers, while leaving surrounding cells unharmed. The nanovesicle achieves this by selectively inducing apoptotic cell death in malignant and metastatic cancer cells rich in surface PS. One phase I clinical trial showed that SapC-DOPS was safe and yielded favorable outcomes in patients with solid tumors, but more pre-clinical studies are needed to better understand the properties of SapC-DOPS, including how SapC-DOPS can eliminate cancer cells that express high levels of surface PS but evade apoptotic cell death and how effective SapC-DOPS is in treating advanced cancers..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Students learn that engineers develop different polymers to serve various functions and …
Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Phosphatidylserine (PS) is a lipid found in the cell membrane. When exposed on the outside of a cell during stress or during cell death, PS can trigger immune suppression. PS also engages PS receptors on immune cells, resulting in clearance of the cell and production of immune suppressive factors. One way tumors evade the host immune system is by engaging PS signaling. Therefore, inhibiting PS signaling suppression is a promising option for treating cancer. A recent review highlights the contributions of the TIM and TAM family of receptors to PS signaling and immune suppression in tumors. and some of the immunotherapy strategies targeting these receptors that are being investigated in preclinical and clinical trials. Due to the complexity of PS-induced immune suppression, there are still many unknowns. such as the detailed mechanisms and signaling pathways that are involved. or the consequences of interrupting these signaling pathways..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The microscopic tardigrade is one of the toughest known organisms in the animal kingdom, capable of surviving environmental extremes such as near-complete desiccation, freezing and high temperatures, and ionizing radiation. Exactly how these tiny creatures are able to withstand these stresses has remained largely a mystery. Now, research is showcasing the role of three protein families not found in other organisms, collectively referred to as tardigrade disordered proteins (TDPs). Unlike typical folded proteins, in solution many TDPs lack a stable 3D structure. This lack of structure may allow them to adopt different conformations under different environmental conditions. Although seemingly diverse, the stress conditions that tardigrades can tolerate are actually quite similar. Similarly to desiccation, freezing removes water from proteins and membranes, and irradiation induces genome damage like that observed during drying..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.