Working in teams of three, students perform quantitative observational experiments on the …
Working in teams of three, students perform quantitative observational experiments on the motion of LEGO MINDSTORMS(TM) NXT robotic vehicles powered by the stored potential energy of rubber bands. They experiment with different vehicle modifications (such as wheel type, payload, rubber band type and lubrication) and monitor the effects on vehicle performance. The main point of the activity, however, is for students to understand that through the manipulation of mechanics, a rubber band can be used in a rather non-traditional configuration to power a vehicle. In addition, this activity reinforces the idea that elastic energy can be stored as potential energy.
"The Chemistry of Power: A Comprehensive Guide to Nuclear Energy is a …
"The Chemistry of Power: A Comprehensive Guide to Nuclear Energy is a carefully designed unit for Chemical Engineering students and lecturers. It is divided into three lessons, each lesson breaks down complex concepts into simple, bite-sized pieces, ensuring a smooth learning experience for all.In Lesson 1, "Understanding Key Terms in Nuclear Energy," we start by learning the basic words used in nuclear energy, like atomic mass and binding energy. Through clear examples, you'll grasp these important ideas and get ready for more challenging stuff.Lesson 2, "Energy Basics," builds on what we've learned. Here, we dive into how energy and mass are connected, making it easier to understand how nuclear reactions work. You'll follow along step by step, so everything stays clear and straightforward.Finally, Lesson 3, "Nuclear Energy Calculations," puts your new skills to the test. You'll solve problems and work together with others to understand how to turn energy into mass and back again. It's like a puzzle, but once you've got it, you'll feel super smart!By following these lessons in order, you'll gradually become a pro in nuclear energy, understanding the ins and outs of how it all works.
Students explore the science of microbial fuel cells (MFCs) by using a …
Students explore the science of microbial fuel cells (MFCs) by using a molecular modeling set to model the processes of photosynthesis and cellular respiration—building on the concept of MFCs that they learned in the associated lesson, “Photosynthesis and Cellular Respiration at the Atomic Level.” Students demonstrate the law of conservation of matter by counting atoms in the molecular modeling set. They also re-engineer a new molecular model from which to further gain an understanding of these concepts.
Students learn about the periodic table and how pervasive the elements are …
Students learn about the periodic table and how pervasive the elements are in our daily lives. After reviewing the table organization and facts about the first 20 elements, they play an element identification game. They also learn that engineers incorporate these elements into the design of new products and processes. Acting as computer and animation engineers, students creatively express their new knowledge by creating a superhero character based on of the elements they now know so well. They will then pair with another superhero and create a dynamic duo out of the two elements, which will represent a molecule.
Once the pride of the German Navy, this 700 foot long heavy …
Once the pride of the German Navy, this 700 foot long heavy cruiser was used by the U.S. as a test target for not one but two atom bombs at Bikini atoll. Today, at the bottom of the ocean, the radiation levels of the Prinz Eugen are low enough for safe exploration. In this video, Jonathan joins historian Mark Miller on a trip to explore this mysterious shipwreck. What they find about the condition of this wreck is surprising. Please see the accompanying lesson plan for educational objectives, discussion points and classroom activities.
This is the second lesson in the Human Anatomy & Physiology Fundamentals …
This is the second lesson in the Human Anatomy & Physiology Fundamentals of Chemistry section. This video covers the atom, as well as the proton, neutron and electron.
This course focuses on the fundamentals of structure, energetics, and bonding that …
This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and solids; structure of complex, disordered, and amorphous materials; tensors and constraints on physical properties imposed by symmetry; and determination of structure through diffraction. Real-world applications include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials. This course is a core subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
Students use gumdrops and toothpicks to make lithium atom models. Using these …
Students use gumdrops and toothpicks to make lithium atom models. Using these models, they investigate the makeup of atoms, including their relative size. Students are then asked to form molecules out of atoms, much in the same way they constructed atoms out of the particles that atoms are made of. Students also practice adding and subtracting electrons from an atom and determining the overall charges on atoms.
In this course, we will explore what makes things in the world …
In this course, we will explore what makes things in the world the way they are and why, to understand the science and consider the engineering. We learn not only why the physical world behaves the way it does, but also how to think with chemical intuition, which can’t be gained simply by observing the macroscopic world. This 2018 version of 3.091 by Jeffrey Grossman and the 2010 OCW version by Don Sadoway cover similar topics and both provide complete learning materials. This 2018 version also includes Jeffrey Grossman’s innovative Goodie Bags, Why This Matters, and CHEMATLAS content, as well as additional practice problems, quizzes, and exams.
Introduction to Solid State Chemistry is a first-year single-semester college course on …
Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT’s general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems. Course Format This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
A complete set of Lecture Videos by Prof. Sadoway. Detailed Course Notes for most video sessions, plus readings in several suggested textbooks. Homework problems with solution keys, to further develop your understanding. For Further Study collections of links to supplemental online content. Self-Assessment pages containing quiz and exam problems to assess your mastery, and Help Session Videos in which teaching assistants take you step-by-step through exam problem solutions.
About OCW Scholar OCW Scholar courses are designed specifically for OCW’s single largest audience: independent learners. These courses are substantially more complete than typical OCW courses, and include new custom-created content as well as materials repurposed from previously published courses. Learn more about OCW Scholar.
Introduction to Solid State Chemistry is a first-year single-semester college course on …
Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT’s general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems. Course Format This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
A complete set of Lecture Videos by Prof. Sadoway. Detailed Course Notes for most video sessions, plus readings in several suggested textbooks. Homework problems with solution keys, to further develop your understanding. For Further Study collections of links to supplemental online content. Self-Assessment pages containing quiz and exam problems to assess your mastery, and Help Session Videos in which teaching assistants take you step-by-step through exam problem solutions.
About OCW Scholar OCW Scholar courses are designed specifically for OCW’s single largest audience: independent learners. These courses are substantially more complete than typical OCW courses, and include new custom-created content as well as materials repurposed from previously published courses. Learn more about OCW Scholar.
To better understand electricity, students investigate the properties of materials based on …
To better understand electricity, students investigate the properties of materials based on their ability to dispel static electricity. They complete a lab worksheet, collect experimental data, and draw conclusions based on their observations and understanding of electricity. The activity provides hands-on learning experience to safely explore the concept of static electricity, learning what static electricity is and which materials best hold static charge. Students learn to identify materials that hold static charge as insulators and materials that dispel charge as conductors. The class applies the results from their material tests to real-world engineering by identifying the best of the given materials for moving current in a solar panel.
Are all atoms of an element the same? How can you tell …
Are all atoms of an element the same? How can you tell one isotope from another? Use the sim to learn about isotopes and how abundance relates to the average atomic mass of an element.
Students act as engineers to apply what they know about how circuits …
Students act as engineers to apply what they know about how circuits work in electrical/motorized devices to design their own battery-operated model motor vehicles with specific paramaters. They calculate the work done by the vehicles and the power produced by their motor systems.
This lesson introduces the concept of electricity by asking students to imagine …
This lesson introduces the concept of electricity by asking students to imagine what their life would be like without electricity. Two main forms of electricity, static and current, are introduced. Students learn that electrons can move between atoms, leaving atoms in a charged state.
Through three lessons and their four associated activities, students are introduced to …
Through three lessons and their four associated activities, students are introduced to concepts related to mixtures and solutions. Students consider how mixtures and solutions and atoms and molecules can influence new technologies developed by engineers. To begin, students explore the fundamentals of atoms and their structures. The building blocks of matter (protons, electrons, neutrons) are covered in detail. The next lesson examines the properties of elements and the periodic table one method of organization for the elements. The concepts of physical and chemical properties are also reviewed. Finally, the last lesson introduces the properties of mixtures and solutions. A comparison of different mixtures and solutions, their properties and their separation qualities are explored.
Students work as engineers to learn about the properties of molecules and …
Students work as engineers to learn about the properties of molecules and how they move in 3D space through the use of LEGO MINDSTORMS(TM) NXT robotics. They design and build molecular models and use different robotic sensors to control the movement of the molecular simulations. Students learn about the size of atoms, Newman projections, and the relationship of energy and strain on atoms. This unique modular modeling activity is especially helpful in providing students with a spatial and tactile understanding of how molecules behave.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.