Learn about position, velocity, and acceleration graphs. Move the little man back …
Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.
This course covers vector and multi-variable calculus. It is the second semester …
This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space.
This course covers vector and multi-variable calculus. It is the second semester …
This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.
This course covers differential, integral and vector calculus for functions of more …
This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics. The materials have been organized to support independent study. The website includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
Lecture Videos recorded on the MIT campus Recitation Videos with problem-solving tips Examples of solutions to sample problems Problems for you to solve, with solutions Exams with solutions Interactive Java Applets (“Mathlets”) to reinforce key concepts
Content Development Denis Auroux Arthur Mattuck Jeremy Orloff John Lewis Heidi Burgiel Christine Breiner David Jordan Joel Lewis
This course covers differential, integral and vector calculus for functions of more …
This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics. The materials have been organized to support independent study. The website includes all of the materials you will need to understand the concepts covered in this subject. The materials in this course include:
Lecture Videos recorded on the MIT campus Recitation Videos with problem-solving tips Examples of solutions to sample problems Problems for you to solve, with solutions Exams with solutions Interactive Java Applets (“Mathlets”) to reinforce key concepts
Content Development Denis Auroux Arthur Mattuck Jeremy Orloff John Lewis Heidi Burgiel Christine Breiner David Jordan Joel Lewis
This course is a continuation of 18.014 Calculus with Theory. It covers …
This course is a continuation of 18.014 Calculus with Theory. It covers the same material as 18.02 Multivariable Calculus, but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
6.863 is a laboratory-oriented course on the theory and practice of building …
6.863 is a laboratory-oriented course on the theory and practice of building computer systems for human language processing, with an emphasis on the linguistic, cognitive, and engineering foundations for understanding their design.
This course introduces students to the theory, algorithms, and applications of optimization. …
This course introduces students to the theory, algorithms, and applications of optimization. The optimization methodologies include linear programming, network optimization, integer programming, and decision trees. Applications to logistics, manufacturing, transportation, marketing, project management, and finance. Includes a team project in which students select and solve a problem in practice.
Play with one or two pendulums and discover how the period of …
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.
Play with one or two pendulums and discover how the period of …
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
This class deals with the modeling and analysis of queueing systems, with …
This class deals with the modeling and analysis of queueing systems, with applications in communications, manufacturing, computers, call centers, service industries and transportation. Topics include birth-death processes and simple Markovian queues, networks of queues and product form networks, single and multi-server queues, multi-class queueing networks, fluid models, adversarial queueing networks, heavy-traffic theory and diffusion approximations. The course will cover state of the art results which lead to research opportunities.
Explore forces, energy and work as you push household objects up and …
Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.
Explore forces, energy and work as you push household objects up and …
Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.
This lesson will be a real-world scenario-based reading module for Reading Scientific …
This lesson will be a real-world scenario-based reading module for Reading Scientific and Technical Text, for readers at level 7. Through an interactive visual scenario, learners will be introduced to a sample loan application form, and will be walked through the meaning and purpose of primary portions of the form and challenging terminology in it.
Students will discuss their future career preferences. They will practice how to …
Students will discuss their future career preferences. They will practice how to be persuasive with their speech to achieve something or to be convincing. Students will decide appropriate ways to talk about themselves and their talents in a formal setting.
This class is an applications-oriented course covering the modeling of large-scale systems …
This class is an applications-oriented course covering the modeling of large-scale systems in decision-making domains and the optimization of such systems using state-of-the-art optimization tools. Application domains include: transportation and logistics planning, pattern classification and image processing, data mining, design of structures, scheduling in large systems, supply-chain management, financial engineering, and telecommunications systems planning. Modeling tools and techniques include linear, network, discrete and nonlinear optimization, heuristic methods, sensitivity and post-optimality analysis, decomposition methods for large-scale systems, and stochastic optimization. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5223 (System Optimisation: Models and Computation).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.