This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"This video is based on a preprint. Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information. As the COVID-19 pandemic wages on, scientific research is uncovering multiple forces that alter the spread of the disease. One enhancing factor could be air pollution. Researchers at the University of Cambridge recently linked COVID-19 to air pollution levels in England, where more than 45,000 patients have died of COVID-19. Initial findings revealed that regional variations in nitrogen oxide and ozone in particular could predict COVID-19 cases and deaths. The risk of infection was found to be increased by exposure to particulate matter (PM). Such pollution can lead to increased inflammation in the lungs or even help carry the virus that causes COVID-19 across large distances..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. …
Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. Students explore the dynamic and competing upper atmospheric roles of the protective ozone layer, the sun's UV radiation and harmful human-made CFCs (chlorofluorocarbons).
This video lesson aims to motivate students about chemistry and to raise …
This video lesson aims to motivate students about chemistry and to raise their awareness about how chemistry helps in solving certain environmental problems. In this lesson, the air pollution problem created by cars and other vehicles is presented. The lesson will highlight causes of this problem, harmful products from it and possible solutions. There will also be discussion of ways to convert the pollutants produced by burning oil in vehicles into more friendly products.
Chemistry and the Environment is designed to accompany a one-semester course in …
Chemistry and the Environment is designed to accompany a one-semester course in chemistry-based discussions of important environmental issues such as air pollution, the ozone layer, climate change and water quality. Chemical principles are introduced, followed by environmental ‘focus’ sections to base discussions on the scientific principles and societal intricacies of the individual topics. Instructors can also use the focus sections as a resource for presentation slides. Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them.
Students observe and discuss a simple balloon model of an electrostatic precipitator …
Students observe and discuss a simple balloon model of an electrostatic precipitator to better understand how this pollutant recovery method functions in cleaning industrial air pollution.
Engineers design methods of removing particulate matter from industrial sources to minimize …
Engineers design methods of removing particulate matter from industrial sources to minimize negative effects of air pollution. In this activity, students will undertake a similar engineering challenge as they design and build a filter to remove pepper from an air stream without blocking more than 50% of the air.
Coal is the most carbon-intensive fossil fuel and a huge contributor to …
Coal is the most carbon-intensive fossil fuel and a huge contributor to climate change, air pollution, and land disruption. It is a chemically complex, rock-like hydrocarbon that contains heavy metals (e.g., mercury and lead), sulfur, and radioactive material. Coal is mined from the Earth and burned to convert chemical energy to heat. Coal is primarily used to generate electricity and for heating.
As a class, students use a low-cost air quality monitor (a rentable …
As a class, students use a low-cost air quality monitor (a rentable “Pod”) to measure the emissions from different vehicles. By applying the knowledge about combustion chemistry that they gain during the pre-activity reading (or lecture presentation, alternatively), students predict how the emissions from various vehicles will differ in terms of pollutants (CO2, VOCs and NO2), and explain why. After data collection, students examine the time series plots as a class—a chance to interpret the results and compare them to their predictions. Short online videos and a current event article help to highlight the real-world necessity of understanding and improving vehicle emissions. Numerous student handouts are provided. The activity content may be presented independently of its unit and without using an air quality monitor by analyzing provided sample data.
By tracing the movement of radiation released during an accident at the …
By tracing the movement of radiation released during an accident at the Chernobyl nuclear power plant, students see how air pollution, like particulate matter, can become a global issue.
Energy and the environment are inextricably linked. Delivery of energy services (what …
Energy and the environment are inextricably linked. Delivery of energy services (what humans want) is the leading source of greenhouse gas emissions, and our energy resource use affects water, land, and wildlife as well. All energy resources have environmental impacts, but some, namely fossil fuels, have more impacts than others.
The negative impacts of energy resource use disproportionately affect low income communities and communities of color in the US and globally. As our population grows and energy access increases, it is important to figure out how we will deliver energy services sustainably and in a way that addresses inequities in environmental impacts.
Students learn about the wonderful and fascinating country of China, and its …
Students learn about the wonderful and fascinating country of China, and its environmental challenges that require engineering solutions, many in the form of increased energy efficiency, the incorporation of renewable energy, and new engineering developments for urban and rural areas. China is fast becoming an extremely influential factor in our world today, and will likely have a large role in shaping the decades ahead. China is the world's largest energy consumer and the largest producer of carbon dioxide emissions, leading engineers and scientists to be concerned about the role these emissions play in rural and urban public and environmental health, as well as in global climate change. Through exploring some sources of air pollution, appropriate housing for different climate zones, and the types of renewable energy, the lessons and activities of this unit present ways that engineers are helping people in China, using an approach to cleaner, smarter, healthier and more-efficient ways of living that apply to people wherever they live.
In this unit, students explore the various roles of environmental engineers, including: …
In this unit, students explore the various roles of environmental engineers, including: environmental cleanup, water quality, groundwater resources, surface water and groundwater flow, water contamination, waste disposal and air pollution. Specifically, students learn about the factors that affect water quality and the conditions that enable different animals and plants to survive in their environments. Next, students learn about groundwater and how environmental engineers study groundwater to predict the distribution of surface pollution. Students also learn how water flows through the ground, what an aquifer is and what soil properties are used to predict groundwater flow. Additionally, students discover that the water they drink everyday comes from many different sources, including surface water and groundwater. They investigate possible scenarios of drinking water contamination and how contaminants can negatively affect the organisms that come in contact with them. Students learn about the three most common methods of waste disposal and how environmental engineers continue to develop technologies to dispose of trash. Lastly, students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. Also, they investigate the technologies developed by engineers to reduce air pollution.
Students develop critical thinking skills by interviewing a person who has perspective …
Students develop critical thinking skills by interviewing a person who has perspective on environmental history. Students explore the concept of a timeline, including historical milestones, and develop a sense of the context of events.
Students will analyze a 20th century photograph of a Los Angeles landscape, …
Students will analyze a 20th century photograph of a Los Angeles landscape, utilizing the principles of design and discussing the message of the work. They will also consider the history of Los Angeles within the broader context of population expansion in U.S. history and write a research paper about the environmental impacts of overpopulation.
This course provides an introduction to the atmospheric chemistry involved in climate …
This course provides an introduction to the atmospheric chemistry involved in climate change, air pollution and biogeochemical cycles using a combination of hands-on laboratory, field studies, and simple computer models. Lectures will be accompanied by field trips to collect air samples for the analysis of gases, aerosols and clouds by the students.
This course provides an introduction to the atmospheric chemistry involved in climate …
This course provides an introduction to the atmospheric chemistry involved in climate change, air pollution and biogeochemical cycles using a combination of hands-on laboratory, field studies, and simple computer models. Lectures will be accompanied by field trips to collect air samples for the analysis of gases, aerosols and clouds by the students.
Members of the Department of Atmospheric Sciences at the University of Illinois …
Members of the Department of Atmospheric Sciences at the University of Illinois Urbana-Champaign have designed a suite of atmospheric science learning modules for middle school students. The curriculum, which implements a flipped-classroom model, is cross-referenced with Common Core and Next Generation Science Standards. It introduces students to topics such as temperature, pressure, severe weather safety, climate change, and air pollution through short instructional videos and critical thinking activities. A goal of this project is to provide middle school science educators with resources to teach while fostering early development of math and science literacy. The work is funded by a National Science Foundation CAREER award. For a complete list of learning modules and to learn more about the curriculum, visit https://www.atmos.illinois.edu/~nriemer/education.html
Air is one of Earth's most precious resources, and we need to …
Air is one of Earth's most precious resources, and we need to take care of it in order to preserve the environment and protect human health. To this end, students develop their understanding of visible air pollutants with an incomplete combustion demonstration, a "smog in a jar" demonstration, and by building simple particulate matter collectors.
Students take a closer look at cars and learn about some characteristics …
Students take a closer look at cars and learn about some characteristics that affect their energy efficiency, including rolling resistance and the aerodynamics of shape and size. They come to see how vehicles are one example of a product in which engineers are making changes and improvements to gain greater efficiency and thus require less energy to operate.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.