Developed for fifth grade and above. Primary biological content area covered:; Plant …
Developed for fifth grade and above. Primary biological content area covered:; Plant growth; Seedling morphology; Hypothesis testing; Experimental design; Line graphing; Introductory statistics.Biology In Elementary Schools is a Saint Michael's College student project. The teaching ideas on this page have been found, refined, and developed by students in a college-level course on the teaching of biology at the elementary level. Unless otherwise noted, the lesson plans have been tried at least once by students from our partner schools. This wiki has been established to share ideas about teaching biology in elementary schools. The motivation behind the creation of this page is twofold: 1. to provide an outlet for the teaching ideas of a group of college educators participating in a workshop-style course; 2. to provide a space where anyone else interested in this topic can place their ideas.
Students learn how nanoparticles can be creatively used for medical diagnostic purposes. …
Students learn how nanoparticles can be creatively used for medical diagnostic purposes. They learn about buckminsterfullerenes, more commonly known as buckyballs, and about the potential for these complex carbon molecules to deliver drugs and other treatments into the human body. They brainstorm methods to track buckyballs in the body, then build a buckyball from pipe cleaners with a fluorescent tag to model how nanoparticles might be labeled and detected for use in a living organism. As an extension, students research and select appropriate radioisotopes for different medical applications.
Looking for a lesson for your younger students? This K-2nd grade lesson …
Looking for a lesson for your younger students? This K-2nd grade lesson will allow students to investigate the three types of honey bees in a colony, identify their roles, and recognize honey bees as part of a community that works together. The lesson includes three activities, vocabulary words, recommended reading, and a "making honey" lab!
Students will learn how to perform basic skills using a Garmin GPS …
Students will learn how to perform basic skills using a Garmin GPS unit; mark waypoints, navigate to a waypoint, use the compass and 'go to' functions to estimate distance to a pre-programmed point, change GPS data to find hidden locations. Students will work in teams and help each other as they learn new GPS skills and gain a working understanding of georeferenced data, using clues and team work to solve problems, and how objects are oriented in space.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This video provides a detailed description of the habitat of the American …
This video provides a detailed description of the habitat of the American Pika and how this organism may serve as a climate indicator species because they have a relatively narrow ecological niche and specialized habitat.
Did you know that the fishier a fish smells, the longer it’s …
Did you know that the fishier a fish smells, the longer it’s been out of the water? This is due to a chemical called trimethylamine, which is an amine, the class of organic compounds we’re discussing in this episode! Although they tend to be pretty stinky, amines are important in many fields like biochemistry, medicine, and agriculture. In this episode of Crash Course Organic Chemistry, we’ll explore amine formation and basicity, and revisit some old friends, imines and enamines!
The Amoeba Sisters strive to facilitate curiosity and engagement by making biology …
The Amoeba Sisters strive to facilitate curiosity and engagement by making biology both humorous and meaningful. The videos use real world examples and silly cartoons to demystify difficult biology concepts, such as cell anatomy, homeostasis, enzymes, and biomolecules. A new video is released weekly. The creators are sisters who both work in education. One is a high school biology teacher who found these videos made biology more approachable and easier to comprehend.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Many patients undergoing chemotherapy for cancer develop a serious side effect called chemotherapy-induced peripheral neuropathy (CIPN). CIPN involves pain, tingling, burning, or numbness in the hands and feet and is caused by neuroinflammation triggered by the protein HMGB1, but the exact mechanisms aren’t clear. To learn more and help find a treatment, researchers recently examined the plasma of human patients and mice with oxaliplatin-induced CIPN. They found that the levels of HMGB1 and its target enzyme MMP-9 (a pain marker) were elevated in CIPN plasma and that a higher dose of oxaliplatin was associated with higher HMGB1 levels and worse pain. In cell experiments, HMGB1 was degraded—and inflammatory molecule expression was suppressed—when the enzyme AMPK was activated suggesting that AMPK activation might be beneficial for CIPN. These effects were dependent on the protein SR-A1..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This problem illustrates how numerical theories are developed, how we might test …
This problem illustrates how numerical theories are developed, how we might test this theory with an analog model, and how numerical models are constructed and the limitations of numerical modeling.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This class analyzes complex biological processes from the molecular, cellular, extracellular, and …
This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work culminates in the preparation of a unique grant application in an area of biological networks.
This course focuses on computational and experimental analysis of biological systems across …
This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.
This lab activity is designed for science students in an introductory climatology …
This lab activity is designed for science students in an introductory climatology course. Upon successful completion of the activity, students will have demonstrated an ability to:
Independently navigate and download climate data from online data libraries. Work with different file types (NetCDF and CSV). Write appropriate MATLAB code to read and manipulate climate data, and create plots (time series and maps) as instructed. Extract meaningful information from large 3-dimensional datasets. Understand and apply fundamental climatology concepts, such as:
Climate statistics (temporal and spatial mean and anomaly; trends; baselines) Ice-albedo feedback resulting in disproportionate sensitivity to climate change in polar regions
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Sidewalks provide a good analog for the study of fractures when outcrops …
Sidewalks provide a good analog for the study of fractures when outcrops are not available. This exercise is taught as the first lab of the semester in an undergraduate structural geology course. Students learn to make systematic observations, measure the orientation and location of fractures, manipulate and analyze data, and consider some kinematic and dynamic questions regarding the origin and significance of fractures. Their experiences are also used later in the course to reinforce key concepts of brittle deformation. Done as a group project, it emphasizes the importance of group work and encourages students to propose and defend their ideas.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"In the absence of oxygen, some prokaryotes can degrade organic matter via anaerobic digestion. This occurs in natural settings, like wetlands, and industrial ones, like wastewater treatment or biogas production. But what about viruses? Bacteriophages can impact their hosts’ community structure through selective pressure and have been used to influence microbial communities, such as through pathogen control. A recent study examined the virome of anaerobic digestion communities undergoing prophage- inducing environmental stresses. The virome was almost entirely composed of tailed bacteriophages of the order Caudovirales. Metagenome reconstruction revealed 1,092 viral genomes and 120 prokaryotic genomes, and over half of the prokaryotic genomes contained a provirus in their genomic sequence. In general, species of viruses and prokaryotes could be grouped by having similar reactions to stressors. Archaea had the most pronounced reactions to stressors and featured behaviors unique to those species..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
An exercise to analyze trends in global oil reserves, production, and consumption. …
An exercise to analyze trends in global oil reserves, production, and consumption.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Comparative planetary geology requires understanding how geological processes are affected by changes …
Comparative planetary geology requires understanding how geological processes are affected by changes in physical environment-each planet and moon provides an opportunity to refine our understanding of how physical geological processes operate. Volcanism is a great example of a major geological process highly susceptible to such variations. Students performing this exercise will constrain how "Amboy Crater" would look if the same eruption happened on the Moon and Mars. Part 1 of the exercise asks small groups to assess either the yield strength of the Amboy flows or the time required for the flow to travel a given distance. After discussion of the results, Part 2 asks students to characterize the dimensions of the same flow, if emplaced on Mars or the Moon (changing only gravitational acceleration), and the time required for it to form; they are asked to predict the outcome in advance. Part 3 uses "Erupt" freeware by Ken Wohletz to explore how gravity changes will affect cinder cone geometry; the model is tested first to see if it correctly predicts an Amboy-like geometry, and afterwards students are asked to brainstorm what other factors should also be modified to improve the accuracy of the simulation, and how these changes would be expected to affect the geomorphological outcome. Finally, Part 4 asks students to use simple ballistic equations, implemented via an online Applet (Stromboli), to constrain the launch angle and starting velocity for the eruption that formed Amboy Crater (modifications are supposedly underway to permit this applet to run with different values of gravitational acceleration and air resistance).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The activity is divided into seven parts, as follows: Part A: students …
The activity is divided into seven parts, as follows:
Part A: students access an online data set of historic global temperature anomalies and use the webpage to answer questions about the source and presentation of the data. Part B: students copy the data into an Excel spreadsheet and organize it so that it is easy for them to use and for others to follow. Part C: students graph their data, explore the use of trend lines, and use a linear regression line to predict future temperatures. Part D: students access an online data set of historic temperature anomalies within their latitude zone, analyze this data, and compare their results to those from Part C. Part E: students access an online data set of historic temperatures for their state, analyze this data, and compare their results to those from Parts C and D. Part F: students choose two original questions related to climate variability and use these or other data sets to address their questions. Part G: students evaluate the statistical significance of their linear regression lines and interpret their results in the context of climate variability
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
During a lab period, students go out in the field to an …
During a lab period, students go out in the field to an area that contains at least 2 fault/fracture sets. Students measure orientations of faults and make observations about the relationship between different fault sets. After the field trip, the students compile their field data, plot it on a stereonet and write-up a brief report. In this report students will use their field observations and stereonet patterns to determine whether faults are related or unrelated to each other.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In preparation for this lab activity, students have read the textbook material …
In preparation for this lab activity, students have read the textbook material on Waves (Garrison, 6th ed., Oceanography), and attended a lecture on the same topic. In class, students will access Coastal Data Information Program (CDIP) data published by the Ocean Engineering Research Group, Center for Coastal Studies, Scripps Institute of Oceanography. Students will compile specific real-time wave and sea surface temperature data sets as specified in the lab assignment. This requires students to generate and interpret multiple graphs from the available data, set-up their own system of data acquisition, and interpret the wave height and sea surface data in the context of the local physical oceanographic parameters.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.