Updating search results...

Search Resources

493 Results

View
Selected filters:
  • Hydrology
Hydrosphere:  Questions and Answers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This sample of plausible questions and responses is designed to help guide the instructor through an entire Socratic lesson. Specifically, it will help instructors learn how to create Socratic questions and design a session of Socratic questioning. It begins with a general question about the hydrosphere, then explores components of the hydrosphere, and finally moves to the specific case of a change in surface material/land cover at Earth's surface.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Date Added:
01/20/2023
IPCC Special Report "The Ocean and Cryosphere in a Changing Climate" - Summary for teachers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Summary for teachers is inspired by the IPCC's Special Report on the Ocean and Cryosphere in a Changing Climate. This resource is a teacher-friendly version of the Summary for Policymakers of the IPCC report. Useful infographics and ideas for short class activities are provided, as well a glossary and a list of educational resources.

Subject:
Anthropology
Career and Technical Education
Environmental Studies
Hydrology
Oceanography
Physical Science
Physics
Social Science
Material Type:
Primary Source
Reading
Provider:
UNESCO
Provider Set:
Office for Climate Education
Date Added:
04/28/2020
Impact Craters and Water on Mars
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students explore for water on Mars using impact crater morphology. During this lab, students: learn to use the equation writing and graphing capabilities in Microsoft Excel, thendevelop and apply an impact crater depth-diameter relationship in an effort to constrain the depth to a possible water-rich layer beneath one or more portions of the surface of Mars!

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Eric Grosfils, Pomona College (egrosfils@pomona.edu)
Date Added:
02/25/2021
Improving Water Quality by Dealing with the First Inch of Rain
Read the Fine Print
Rating
0.0 stars

The suburban city of Mount Rainier, Maryland, is doing its part to improve the water quality of a polluted river in its region: residents and organizations are using green infrastructure to reduce stormwater runoff.

Subject:
Hydrology
Physical Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
09/20/2016
In-classroom Pumping Test
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A toddler wading pool or similar tank is filled with common sand (available from home improvement stores in bags) to a depth of 15-20 cm. The sand is saturated with a slow inflow and outflow to a floor drain. A 2-inch PVC slotted screen section is buried in the sand near the center of the tank with a capped end at the bottom. Small (1 cm diameter or similar) slotted or perforated PVC or copper tubing are placed as piezometers in the sand at short distances (e.g., 10-20 cm) from the pumping "well." A fountain pump capable of discharging up to 100-150 ml/min is placed within the "well" with adequate discharge tubing to conduct the water to a drain. A stopcock is placed in the tubing to control flow. Alternatively, if the tank of sand is on a very sturdy table, a simple siphon with tubing can be used as a pump. Drawdown is determined by the difference between a pre-pumping level measurement from the top of the "piezometers" and subsequent measurements made in the same "piezometer" at times after pumping starts. Water levels may be measured using chalked wooden rods. Alternatively, a small cork with a slender wooded food skewer marked in millimeter increments can be placed in each piezometers and the students can watch the change in level of the markings relative to the top of the "piezometer." Flow is repeatedly measured using a graduated cylinder. At the start of the test, students or teams of students are assigned to either take water level measurements at a specific piezometer or to measure and control the flow rate. The data are collected on a logarithmically increasing time interval for about an hour. The flow and drawdown data are analyzed by various means (Theis curve, Jacob straight-line method, Bolton curves, etc.) either manually or using AQTESOLV or similar software. Though the drawdowns are small, the data have provided quite reasonable estimates of hydraulic conductivity for the sand.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
David Becker
Date Added:
11/25/2019
Induced Infiltration Animation: Woburn Wells G & H and the Aberjona River
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

It is still unknown whether the cluster of childhood leukemia cases in east Woburn was caused by TCE and PCE contamination from five known sources of contamination within the capture zones of municipal wells G and H, or whether the leukemias were caused by induced infiltration of Aberjona River water, which may have contained dissolved concentrations of arsenic, chromium, and lead. Several papers have been written about the arsenic, chromium, and lead contamination in Woburn. These papers could be read, combined with a broad discussion about mobility of heavy metals under different oxidation states, hypotheses drawn by the class, and experiments designed by the students to ascertain whether contaminated river water could have reached wells G and H. Designing an experiment to test an hypothesis is a higher-order thinking skill needed by all scientists and engineers.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Scott Bair
Date Added:
09/04/2019
Inleiding Watermanagement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Hoofdpunten: De cursus geeft een kennismaking met infrastructuur voor Watermanagement. Voor Waterbeheer ligt de focus op ontwatering, afwatering, wateraanvoer en het ontwerpen van eenvoudige aan- en afvoersystemen. Voor Civiele gezondheidstechniek ligt de focus op Gezondheidstechniek en volksgezondheid, drinkwatervoorziening en Integraal waterbeheer. Leerdoelen: Begrip van basisopzet infrastructuur Watermanagement. Eenvoudige systemen kunnen ontwerpen.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
J. C. van Dijk
N.C. van de Giesen
Date Added:
07/19/2011
Integrated Critical Zone project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This project is a way to assemble information about geology, hydrogeology, and soils into a coherent whole in a way that may otherwise not happen in any one class. The "critical zone" concept ties the pieces together. This project is not tied to a course but I have used it as a component of a senior assessment for geology students.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Geography
Physical Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Nick Bader
Date Added:
08/06/2019
Integrated Water Management
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The lectures introduce a number of topics that are important for IWRM and the modeling exercise. The lectures introduce water management issues in the Netherlands, Rhine Basin, and Volta Basin. The role-play is meant to experience some of the social processes that, together with technical knowledge, determine water management.

Subject:
Hydrology
Physical Science
Material Type:
Lecture Notes
Reading
Simulation
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Prof.dr.ir. N.C. van de Giesen
Date Added:
02/17/2016
Integrating Education and Stormwater Management for Healthy Rivers and Residents
Read the Fine Print
Rating
0.0 stars

The City of Ann Arbor recognized stormwater runoff as a growing threat to the quality of their water supply. They're addressing the issue with two complementary strategies.

Subject:
Hydrology
Physical Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/29/2016
Introduction to Groundwater Assignment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this lab, students investigate groundwater flow and water quality within a groundwater well field on the CSU campus. The well field is part of the GroundWater Education and Teaching (GetWET) Observatory south of the Hilton Inn off Centre Drive. Students determine water flow paths and rates as well as measure water quality parameters such as water temperature, pH, electrical conductivity, and dissolved oxygen.

Materials needed for this lab include:

Groundwater equipment: Groundwater well or wells adjacent to a perennial stream.
Water quantity equipment: Electronic water meter, staff, plate, tape, stop watch, and float to measure surface velocity.
Water quality equipment: pH, temperature specific conductance, and dissolved oxygen meters, bailer, and bucket to collect samples.
Other equipment: Map of site showing location of wells and stream.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Chemistry
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Sara Rathburn
Date Added:
08/16/2019
Introduction to Water Chemistry
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on water quality issues. Topics include the importance of clean water, the scarcity of fresh water, tap water contamination sources, and ways environmental engineers treat contaminated water.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jessica Ray
Date Added:
09/18/2014
Introduction to urban watershed geochemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main goal of this multi-part field and lab exercise is to introduce students to practical aspects of soil and water geochemistry. Some of the analyses for this lab are conducted in the field using field analytical instruments and rest of the analyses is conducted in a wet chemistry/geochemistry lab. There are several objectives:
1. Learn how to sample water and soil samples in a safe and effective manner
2. Collect basic aqueous chemical parameters in the field
3. Compare field collected data with that obtained using advanced instruments in the laboratory
4. Determine bulk physical and chemical properties of the soils in the lab
5. Determine trace and major element concentrations of the soils in the laboratory
At the end of this exercise students will gain a better appreciation for how soil and water quality is assessed in multiple ways. They are also introduced to basic "tools-of-the-trade" in the environmental geochemistry and also using Excel to make simple and advanced calculations as well as for plotting data. During preparation of lab reports, they are introduced to basic elements of an effective data-based technical paper.

Key words: urban watershed, soil chemistry, water chemistry, aqueous geochemistry, field analysis, analytical chemistry

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Career and Technical Education
Chemistry
Environmental Studies
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Vijay Vulava
Date Added:
04/11/2022
Investigating Contact Angle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe how water acts differently when placed on hydrophilic and hydrophobic surfaces. They determine which coatings are best to cause surfaces to shed water quickly or reduce the "fogging" caused by condensation.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jean Stave
Professor Chuan-Hua Chen
Date Added:
09/18/2014
Investigating Erosion
Rating
0.0 stars

In this inquiry-based lesson, students will investigate how rainfall changes the land and causes runoff. The students will simulate a stream table to show how rainfall erodes the land. This lesson results from a collaboration between the Alabama State Department of Education and ASTA.

Subject:
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
Alabama Learning Exchange (ALEX)
Date Added:
04/29/2019
Investigating How Terrain and Watersheds are Connected
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity students will gain an understanding of how terrain affects a watershed. Students will use maps and Google Earth to "get a picture" of the terrain within their watershed. They will use this knowledge to create an investigation of their stream which will help answer student generated questions about the connection of terrain and water systems.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mick Hamilton
Date Added:
08/10/2012
Investigating Local Stream Discharge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation where students calculate stream discharge, develop and complete an investigation involving the stream, interpret their findings, and report to their peers.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Katie Melgaard
Date Added:
08/10/2012
Investigating Ponds and Streams: How clean is our water?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation where students gather data on ponds and compare the results to determine the quality of the water.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kyle Johnson
Date Added:
08/16/2012
Investigating Precipitation: Snow
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity combines field and classroom investigations about snowflakes to develop a testable question.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Holly Hansen
Date Added:
08/16/2012
Investigating River Flow: Calculating the Discharge of a Stream
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation in which students will gather data from a stream to calculate the discharge. They will need to interpret their findings and examine what factors could change the discharge of a stream over time.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Heidi Hilliard
Date Added:
08/10/2012