Updating search results...

Search Resources

10000 Results

View
Selected filters:
  • Applied Science
#8 Animal House
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Coders use a variety of blocks and sprites to create their own interactive diorama about animals on a farm. The purpose of this project is to introduce coders to the sound blocks.

Subject:
Applied Science
Computer Science
Material Type:
Activity/Lab
Lesson
Provider:
Boot Up PD
Author:
Boot up PD
Date Added:
09/23/2019
8th Stan
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

8th Standard

Science Textbook Lesson

Chapter 11

Force & Pressure

NCERT Syllabus

Subject:
Applied Science
Material Type:
Diagram/Illustration
Textbook
Date Added:
07/11/2019
#9 Musical Instrument
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Coders will trigger sound blocks to play a musical instrument made out of different sprites. The purpose of this project is to review creating sprites and triggering sound blocks when a sprite is tapped. Another purpose of this project is to also introduce remixing.

Subject:
Applied Science
Computer Science
Material Type:
Activity/Lab
Lesson
Provider:
Boot Up PD
Author:
Boot up PD
Date Added:
09/23/2019
9th Grade Cube Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will use a perceived weak material to construct something that is surprisingly strong.
Students can experiment with different shapes and configurations to see what holds the most weight.
The cube size is defined, what each student places within each 4x4 square, is up to them.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson
Date Added:
02/28/2019
9th Grade Cube Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will use a perceived weak material to construct something that is surprisingly strong.
Students can experiment with different shapes and configurations to see what holds the most weight.
The cube size is defined, what each student places within each 4x4 square, is up to them.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson
Date Added:
05/03/2021
AAAS - Global Climate Change video
Read the Fine Print
Educational Use
Rating
0.0 stars

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Oceanography
Physical Science
Material Type:
Diagram/Illustration
Reading
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
AAAS
American Association for the Advancement of Science (AAAS)
Date Added:
05/15/2012
ABILITY - Visualizing the Unimaginable - TU Delft OCW
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students and professionals in science, design and technology have to develop and communicate concepts that are often difficult to comprehend for the public, their peers and even themselves.

IMAGE | ABILITY – Visualizing the Unimaginable, will help you enhance your communication and interpersonal skills and provide insight, tips and tricks to make such complex and seemingly unimaginable concepts and ideas imaginable.

After finishing this course you will be more skilled in finding the right visual language to convey your ideas, thoughts and vision. You will be able to illustrate units and quantities, concepts and themes and you will know how to unravel complexity by using diagrams and schemes.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. M.C. Stellingwerff
Date Added:
08/01/2018
ACESSE Resource B - How to Assess Three-Dimensional Learning in Your Classroom
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The NRC Framework for K-12 Science Education and the resulting Next Generation Science Standards focus on an integrated three-dimensional view of science learning in which students develop understanding of core ideas of science and crosscutting concepts in the context of engaging in science and engineering practices.How is assessing three-dimensional science learning different than how we have thought of science learning in the past? How can we design assessment tasks that elicit student’s current understanding of specific aspects of the disciplinary core ideas, science and engineering practices, and crosscutting concepts in order to shape future instruction? In this workshop, participants will learn how to interpret and design cognitive formative assessment to fit a three-dimensional view of learning.This resource originates from a series of PD sessions on 3D formative assessment developed and provided by Katie Van Horne, Shelley Stromholt, Bill Penuel, and Philip Bell. It has been improved through a collaboration in the ACESSE project with science education experts from 13 states. Please cite this resource as follows:Stromholt, S., Van Horne, K., Bell, P., Penuel, W. R., Neill, T. & Shaw, S. (2017). How to Assess Three-Dimensional Learning in Your Classroom: Building Assessment Tasks that Work. [OER Professional Development Session from the ACESSE Project] Retrieved from http://stemteachingtools.org/pd/SessionB

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Material Type:
Module
Author:
Sarah Evans
Philip Bell
Shelley Stromholt
Katie Van Horne
WILLIAM PENUEL
Sam Shaw
Tiffany Neill
Abby Rhinehart
Date Added:
01/06/2017
ACESSE Resource C - Making Science Instruction Compelling for All Students
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can science instruction be meaningfullyconnected to the out-of-school lives of students? In this professional development, we will consider how to design formative assessments that build on learners’ interest and knowledge, promoting equity and social justice in the process. The material for this resource comes from a series of PD sessions on formative assessment originally developed by Philip Bell and Shelley Stromholt.We will be updating this Facilitator's Guide for ACESSE Resource C with the most up to date information about this resource over time. If you encounter problesm with this resources, you can contact us at STEMteachingtools@uw.eduThis resource was refined through a 13-state collaboration to make the resource more broadly useful. If you choose to adapt these materials, please attribute the source and that it was work funded by the National Science Foundation (NSF).

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Material Type:
Module
Author:
Sarah Evans
Philip Bell
Abby Rhinehart
Date Added:
06/01/2017
ACESSE Resource D - How to Craft 3D Classroom Science Assessments
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Abstract: This session provides a step-by-step process to support participants as they design a 3D assessment task for the science classroom. Along the way, they learn how to define 3D learning performances for specific lessons—and how to use a range of tools to support their assessment design work. A key goal of the session activity is to improve the connection of intended learning goals to assessment practices. Participants build their 3D assessment design capacity by designing and workshopping tasks—before piloting them in their classrooms. The approaches learned in this workshop can be used with any curricula, at any grade level, and across all subjects of science. 

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Material Type:
Module
Author:
Hank Clark
Philip Bell
Abby Rhinehart
Deb Morrison
Date Added:
10/30/2017
ACESSE Resource E: Selecting Anchoring Phenomena for Equitable 3D Teaching and Assessment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This pair of workshops is designed to introduce you to the process of selecting phenomena that can anchor an entire unit that supports students’ 3D science learning or that can serve as a basis for a multi-component assessment task. This resource can also be used by individuals wanting to refine their teaching practice around phenomena based instruction. You may have heard a lot about phenomena, but you may also be wondering what exactly they are, and whether using phenomena is any different from how teachers teach today already.This learning experience will help you:Explain to a peer the role of phenomena and design challenges in science teaching, with a particular focus on equity and justice. Generate working definitions of phenomena, design challenges, and disciplinary core ideas. Identify phenomena related to a bundle of three-dimensional standards. Experience how phenomena can be introduced at the start of a unit, in order to launch a student-driven series of questions.

Subject:
Applied Science
Education
Material Type:
Module
Author:
Hank Clark
WILLIAM PENUEL
Philip Bell
Deb Morrison
Abby Rhinehart
Date Added:
09/11/2018
ACESSE Resource G - Learning to See the Resources Students Bring to Sense-Making
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Overview: In this workshop, we will build our capacity to identify the range of intellectual resources students use as they make sense of phenomena. We will first explore how equity and justice relate to culture-based approaches to pedagogy—and then focus on how to identify and leverage the resources students use in moments of sensemaking. This resource can also be used by individuals wanting to learn how equity involves promoting the rightful presence of all students across scales of justice, desettling inequities, and supporting expansive learning pathways. This workshop provides participants with an opportunity to explore important theoretical ideas by exploring examples of how learners engage in diverse sense-making. Participants will learn about some of the challenges that less expansive learning environments can cause for learners from non-dominant communities. This resource is estimated to take between 161-268 minutes (2 ⅔ - 4 ¾ hours), depending on the choices of the facilitator in scenario selection.

Subject:
Applied Science
Education
Engineering
Life Science
Material Type:
Module
Author:
Hank Clark
Philip Bell
Deb Morrison
Gina Tesoriero
Abby Rhinehart
Date Added:
02/25/2019
AC Electrical Circuit Analysis: A Practical Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An essential and practical text for both students and teachers of AC electrical circuit analysis, this text picks up where the companion DC electric circuit analysis text leaves off. Beginning with basic sinusoidal functions, ten chapters cover topics including series, parallel, and series-parallel RLC circuits. Numerous theorems and analysis techniques are examined including superposition, Thévenin's theorem, nodal and mesh analysis, maximum power transfer and more. Other important topics include AC power, resonance, Bode plots and an introduction to three-phase systems. Each chapter begins with a set of chapter objectives and includes a summary and review questions. A total of over 500 end-of-chapter exercises are included. A companion laboratory manual is available.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Author:
James M. Fiore
Date Added:
05/28/2020
ACRL Framework for Information Literacy for Higher Education at MCC
Unrestricted Use
CC BY
Rating
0.0 stars

The Framework, re-framed in "plain English" for students and faculty. The goal was to make the ACRL Framework easier to understand (many people don't use iterative in everyday conversation, for example) and to make the connection between information literacy and institutional mission/vision and learning outcomes clear.

Cover photo by geraldo stanislas on Unsplash

Subject:
Applied Science
Composition and Rhetoric
Education
English Language Arts
Higher Education
Information Science
Material Type:
Reading
Student Guide
Author:
Deb Baker
Date Added:
11/20/2020
AC analysis intro 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solving circuits with differential equations is hard. If we limit ourselves to sinusoidal input signals, a whole new method of AC analysis emerges. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
07/31/2016