This subject describes and illustrates computational approaches to solving problems in systems …
This subject describes and illustrates computational approaches to solving problems in systems biology. A series of case-studies will be explored that demonstrate how an effective match between the statement of a biological problem and the selection of an appropriate algorithm or computational technique can lead to fundamental advances. The subject will cover several discrete and numerical algorithms used in simulation, feature extraction, and optimization for molecular, network, and systems models in biology.
Short Description: The goal of this textbook is to introduce you to …
Short Description: The goal of this textbook is to introduce you to the foundational topics of chemical engineering. This textbook will give you a good basic understanding of a number of chemical engineering concepts, which you can take with you as you progress in your engineering degree and career.
Long Description: The goal of this textbook is to introduce you to the foundational topics of chemical engineering. This textbook will give you a good basic understanding of a number of chemical engineering concepts, which you can take with you as you progress in your engineering degree and career. This book covers the basics of process diagrams, reaction chemistry, phase equilibrium, energy balances, unsteady-state operations, process control, process economics and safety, and green engineering. The book provides basic conceptual information on each topic and allows the readers to test their understanding of each topic through practice examples and exercises. The book pinpoints important concepts and terms for the readers to take note of and even includes a set of flashcards at the end of each chapter, which readers can use to test their general understanding and grasp of the topic. The appendices in the book’s back matter provide readers with additional resources for solving problems and accessing data and information.
Word Count: 63924
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
This course is an introduction to computational biology emphasizing the fundamentals of …
This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.
This is a foundation subject in modern software development techniques for engineering …
This is a foundation subject in modern software development techniques for engineering and information technology. The design and development of component-based software (using C# and .NET) is covered; data structures and algorithms for modeling, analysis, and visualization; basic problem-solving techniques; web services; and the management and maintenance of software. Includes a treatment of topics such as sorting and searching algorithms; and numerical simulation techniques. Foundation for in-depth exploration of image processing, computational geometry, finite element methods, network methods and e-business applications. This course is a core requirement for the Information Technology M. Eng. program. This class was also offered in Course 13 (Department of Ocean Engineering) as 13.470J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.470J designation was dropped in lieu of 2.159J.
The Fourier Series allows us to model any arbitrary periodic signal with …
The Fourier Series allows us to model any arbitrary periodic signal with a combination of sines and cosines. In this video sequence Sal works out the Fourier Series of a square wave. Created by Sal Khan.
This website presents the fundamental principles of fracture mechanics, with many examples …
This website presents the fundamental principles of fracture mechanics, with many examples included. It covers both linear (LEFM) and nonlinear fracture mechanics, including J-Integrals, as well as fatigue crack growth concepts and mechanisms.
In this second edition, which is the result of numerous revisions, updates, …
In this second edition, which is the result of numerous revisions, updates, and additions, the authors cover the basic concepts of fracture mechanics for both the linear elastic and elastic-plastic regimes. The fracture mechanics parameters K, G, J and CTOD are treated in a basic manner along with the test methods to determine critical values. The development of failure assessment based on elastic-plastic fracture mechanics is reflected in a comprehensive treatment.
Three chapters are devoted to the fracture mechanics characterisation of crack growth. Fatigue crack growth is extensively treated, and attention is paid to the important topic of the initiation and growth of short fatigue cracks. Furthermore, sustained load fracture and dynamic crack growth are discussed, including various test techniques, e.g., the determination of the crack arrest toughness.
Finally, there are two chapters dealing with mechanisms of fracture and the ways in which actual material behaviour influences the fracture mechanics characterisation of crack growth.
This textbook is intended primarily for engineering students. It will be useful to practising engineers as well, since it provides the background to several test and design methods and to criteria for material selection.
Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects …
Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.
This class provides an introduction to quantitative models and qualitative frameworks for …
This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.
This website consists of a series of 3D simulations on engineering technology …
This website consists of a series of 3D simulations on engineering technology topics. Developed by and for the Eastern Iowa Community Colleges' Engineering Technology programs, these simulations, which are approximately 2-9 minutes long, are used as part of their curriculum to help students quickly and thoroughly grasp the concepts being presented in a visual format. Some simulations are paired with additional interactive quiz questions and can be downloaded as .zip files. Topics covered include: AC Circuits, DC Circuits, Digital Currents & Systems, Electrical Motor Control, Fluid Power Control, Fluid Power Design & Application, Fluid Power Fundamentals, Industrial Print Reading (Engineering Design), Industrial Robotics, Lean Manufacturing, Microcontrollers, Motion Control, Process Control, Programmable Logic Controllers, and Solid Stats & Systems. This workforce solution is funded by the Pathways to Engineering Technology Careers grant which is 100% financed through a $2.5 million grant from the U.S. Department of Labor’s Employment & Training Administration.
"File: Thinking Cartoon Businessman (Flipped).svg" by Clip Art by Vector Toons is …
"File: Thinking Cartoon Businessman (Flipped).svg" by Clip Art by Vector Toons is licensed under CC BY-SA 4.0."File: Vertical-mass-on-spring-2.svg" by MikeRun is licensed under CC BY-SA 4.0.
Are you interested in investigating how nature engineers itself? How engineers copy …
Are you interested in investigating how nature engineers itself? How engineers copy the shapes found in nature (“biomimetics”)? This Freshman Seminar investigates why similar shapes occur in so many natural things and how physics changes the shape of nature. Why are things in nature shaped the way they are? How do birds fly? Why do bird nests look the way they do? How do woodpeckers peck? Why can’t trees grow taller than they are? Why is grass skinny and hollow? What is the wood science behind musical instruments? Questions such as these are the subject of biomimetic research and they have been the focus of investigation in this course for the past three years.
Between 70 and 75% of the Earth's surface is covered with water …
Between 70 and 75% of the Earth's surface is covered with water and there exists still more water in the atmosphere and underground in aquifers. In this lesson, students learn about water bodies on the planet Earth and their various uses and qualities. They will learn about several ways that engineers are working to maintain and conserve water sources. They will also think about their role in water conservation.
Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force …
Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.
The information, activities and assessments included in these curriculum modules aim to …
The information, activities and assessments included in these curriculum modules aim to tell a story. This storyline will help students learn the basics of denitrification and the nitrogen cycle to make sense of our anchor phenomenon - the Gulf Dead Zone. Students will learn that local conditions and actions can have a significant impact on global issues. The activities with which students will engage constitute a meaningful pathway to understanding and are not intended to be used in isolation. As you make plans for how these modules will be used, carefully consider the connections and interdependence of the activities, which make it difficult to separate the activities and is not advised.
In this activity, students will use a tutorial on the U.S. Environmental …
In this activity, students will use a tutorial on the U.S. Environmental Protection Agency's website to learn about how surface water is treated to make it safe to drink.
The objective of this course is to introduce large-scale atomistic modeling techniques …
The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks. This course was featured in an MIT Tech Talk article.
This lesson focuses on the biggest problem faced by any young programmer …
This lesson focuses on the biggest problem faced by any young programmer - i.e. the LOGIC BUILDING required while solving a particular problem. With programming, the solution to a particular problem lies in the head, but one is unable to convert it into a computer program. This is because the thought processes of a human are much faster than the sense of observation. If this thought process could be slowed down, logic to solve a programming problem could be found very easily. This lesson focuses on converting this psychological thought process in a step-by -step logic fashion that a computer program can understand. This lesson is recorded in a kitchen where the basic programming concepts are taught by giving examples from the process of making a mango milk shake. This lesson teaches the 4 following techniques: 1) Swapping two variables by swapping a glass of milk with a glass of crushed ice; 2) Finding max from an array by finding the biggest mango; 3) Sorting an array by arranging the jars; and 4) Understanding the concept of a function, parameters and return type by comparing it with the blender/juicer. The lesson targets those students who know the syntax of programming in any language (C or GWBASIC preferred), but are unable to build the logic for a program. It can be taught in a class of 45 to 50 minutes.
This lesson is also available in Mandarin Chinese.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.