The Internet lets us share perfect copies of our work with a …
The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work “open access”: digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder consent, and many authors, musicians, filmmakers, and other creators who depend on royalties are understandably unwilling to give their consent. But for 350 years, scholars have written peer-reviewed journal articles for impact, not for money, and are free to consent to open access without losing revenue.
In this concise introduction, Peter Suber tells us what open access is and isn’t, how it benefits authors and readers of research, how we pay for it, how it avoids copyright problems, how it has moved from the periphery to the mainstream, and what its future may hold. Distilling a decade of Suber’s influential writing and thinking about open access, this is the indispensable book on the subject for researchers, librarians, administrators, funders, publishers, and policy makers.
The Internet lets us share perfect copies of our work with a …
The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work “open access”: digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder consent, and many authors, musicians, filmmakers, and other creators who depend on royalties are understandably unwilling to give their consent. But for 350 years, scholars have written peer-reviewed journal articles for impact, not for money, and are free to consent to open access without losing revenue.
In this concise introduction, Peter Suber tells us what open access is and isn’t, how it benefits authors and readers of research, how we pay for it, how it avoids copyright problems, how it has moved from the periphery to the mainstream, and what its future may hold. Distilling a decade of Suber’s influential writing and thinking about open access, this is the indispensable book on the subject for researchers, librarians, administrators, funders, publishers, and policy makers.
This is a course on the design and implementation of operating systems …
This is a course on the design and implementation of operating systems and their use as a foundation for systems programming. Topics covered include virtual memory; file systems; threads; context switches; kernels; interrupts; system calls; and interprocess communication, coordination, and interaction between software and hardware. A multi-processor operating system for RISC-V, xv6, is used to illustrate these topics. Individual laboratory assignments involve extending the xv6 operating system, for example to support sophisticated virtual memory features and networking.
In this video lesson, students will learn about linear programming (LP) and …
In this video lesson, students will learn about linear programming (LP) and will solve an LP problem using the graphical method. Its focus is on the famous "Stigler's diet" problem posed by the 1982 Nobel Laureate in economics, George Stigler. Based on his problem, students will formulate their own diet problem and solve it using the graphical method. The prerequisites to this lesson are basic algebra and geometry. The materials needed for the in-class activities include graphing paper and pencil. This lesson can be completed in one class of approximately one hour. If the teacher would like to cover the simplex algorithm by George Dantzig as an alternative solution method, an additional whole class period is suggested.
This learning video explores the mysterious physics behind boomerangs and other rapidly …
This learning video explores the mysterious physics behind boomerangs and other rapidly spinning objects. Students will get to make and throw their own boomerangs between video segments! A key idea presented is how torque causes the precession of angular momentum. One class period is required to complete this learning video, and the optimal prerequisites are a familiarity with forces, Newton's laws, vectors and time derivatives. Each student would need the following materials for boomerang construction: cardboard (roughly the size of a postcard), ruler, pencil/pen, scissors, protractor, and a stapler.
This video lesson explores Newton's Third Law of Motion through examination of …
This video lesson explores Newton's Third Law of Motion through examination of several real world examples of this law in action, including that of a donkey cart - a site common in the streets of Pakistan. Students will understand that forces act on objects even if the objects appear to be static and that certain conditions - gravity in particular - affect how two objects interact. The time needed to complete this lesson is approximately 50-60 minutes, and students should be familiar with basic mechanics such as Newton's laws, levers, etc. The materials required are a couple of spring balances, a meter rule, tape, pencil, two desks, and some lab weights (few grams each). The types of in-class activities for between the video breaks include active discussions and participation by students in activities related to the Third Law.
The objective of this lesson is to illustrate how a common everyday …
The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.
SP.255 is a lecture, discussion, and project based seminar about the physics …
SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.
This course explores policy and planning for sustainable development. It critically examines …
This course explores policy and planning for sustainable development. It critically examines concept of sustainability as a process of social, organizational, and political development drawing on cases from the U.S. and Europe. It also explores pathways to sustainability through debates on ecological modernization; sustainable technology development, international and intergenerational fairness, and democratic governance.
Earth contains a variety of plants to provide food, medicine and, most …
Earth contains a variety of plants to provide food, medicine and, most importantly, energy sources for humans. In this lesson, students will categorize plants by their components and shapes. Additionally, they will learn the mechanisms behind the making of medicines and bio-fuels. It is important that the students have prior knowledge of the plant cell structures and functions. The video duration is 21 minutes, during which the students will use skills such as classification and experimentation. The students must therefore be supplied with various samples of plants. In Arabic with English subtitles.
This lesson focuses on the process of pollination. The learning objectives include …
This lesson focuses on the process of pollination. The learning objectives include learning the anatomy and physiology of flowers, the ecology of pollination, and a focus on plants as essential players in the natural world. There are no prerequisites for the lesson. The lesson will take 1½ hours, or 2 class periods or more -- depending on the areas teachers want to spend more time on or how far in depth they want their students to go. Materials needed are colored modeling clay, 8 or more assorted fresh flowers or pictures of flowers, preferably native to the local ecosystem. Dissecting microscopes or magnifying glasses are great for examining the fresh flowers, but not necessary. Additionally, pictures of different subjects/objects amongst plants are needed for the last activity. Activities for the breaks include assessing student knowledge of flowers by model building, and examining flowers to determine and distinguish between the pollination anatomy of different flowers.
This course explores the evolution of poverty and economic security in the …
This course explores the evolution of poverty and economic security in the United States, within a global context. It examines the impact of recent economic restructuring and globalization, and reviews the current debate about the fate of the middle class, sources of increasing inequality, and approaches to advancing economic opportunity and security. In this class, students will study the topic of poverty and economic security through the lens of the lived experience of Americans: individuals, families, and households; exploring the history, geography, and forces shaping the likelihood of being poor in America.
6.622 covers modeling, analysis, design, control, and application of circuits for energy …
6.622 covers modeling, analysis, design, control, and application of circuits for energy conversion and control. As described by the Institute of Electrical and Electronics Engineers (IEEE), power electronics technology “encompasses the use of electronic components, the application of circuit theory and design techniques, and the development of analytical tools toward efficient electronic conversion, control, and conditioning of electric power.” Students taking this class will come away with an understanding of the fundamental principles of power electronics, and knowledge of how to both analyze and design power electronic components and systems.
In this lesson, through various examples and activities, exponential growth and polynomial …
In this lesson, through various examples and activities, exponential growth and polynomial growth are compared to develop an insight about how quickly the number can grow or decay in exponentials. A basic knowledge of scientific notation, plotting graphs and finding intersection of two functions is assumed.
This class introduces students to the interdisciplinary nature of 21st-century engineering projects …
This class introduces students to the interdisciplinary nature of 21st-century engineering projects with three threads of learning: a technical toolkit, a social science toolkit, and a methodology for problem-based learning. Students encounter the social, political, economic, and technological challenges of engineering practice by participating in real engineering projects with faculty and industry; this semester’s major project focuses on the engineering and economics of solar cells. Student teams will create prototypes and mixed media reports with exercises in project planning, analysis, design, optimization, demonstration, reporting and team building.
This course is an introduction to the physical processes used to measure …
This course is an introduction to the physical processes used to measure the properties of plasmas. It will cover diagnostics suitable for a wide range of plasmas, including magnetically confined fusion plasmas and high-energy-density plasmas. Techniques include the measurements of magnetic and electric fields, particle flux, refractive index, emission and scattering of electromagnetic waves, and nuclear diagnostics.
This course is an introduction to the problems of philosophy—in particular, to …
This course is an introduction to the problems of philosophy—in particular, to problems in ethics, metaphysics, theory of knowledge, and philosophy of logic, language, and science. It takes a systematic rather than historical approach. Readings come from classical and contemporary sources, but emphasis is on examination and evaluation of proposed solutions to the problems.
Production of Educational Videos is an introduction to technical communication that is …
Production of Educational Videos is an introduction to technical communication that is situated in the production of educational videos; the assignments are all focused on the production of videos that teach some aspect of MIT’s first-year core curriculum. The objective of these assignments is improvement in both communication ability and communication habits; these improvements are effected by providing participants with instruction, practice, feedback, and the opportunity for reflection. In addition to improvements in communication skills, improvement is expected in students’ attitude towards writing, oral presentations, and collaboration; as the semester progresses, students should feel confident of their ability to write, present, and collaborate.
Sustainability challenges organizations to address the implications – and responses – in …
Sustainability challenges organizations to address the implications – and responses – in their own operations and supply chain, products/services/markets, and community responsibilities. This course exposes students to professionals and organizations who are actively working toward making their organizations and industries sustainable.
This course discusses the evolution and role of urban public transportation modes, …
This course discusses the evolution and role of urban public transportation modes, systems, and services, focusing on bus and rail. It covers various topics, including current practice and new methods for data collection and analysis, performance monitoring, route design, frequency determination, vehicle and crew scheduling, effect of pricing policy and service quality on ridership.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.