This is an activity about the Hubble Deep Field image, an observation …
This is an activity about the Hubble Deep Field image, an observation of one small area of sky that contained no previously-detected objects. The long time exposure of this image allows us to detect some of the most distant objects seen in our Universe. Learners will view an image of the Hubble Deep Field and identify how many distant galaxies are visible as well as the types of galaxies they might be. Observations will be taken a step further to infer predominant age of a galaxy and determine if there are any trends in age (color) versus galaxy size or type and, ultimately, if the distant Universe appears relatively uniform. This activity is Astronomy Activity 4 in a larger resource, titled "Space Update."
In this experiment, students explore the diffraction of light into different wavelengths …
In this experiment, students explore the diffraction of light into different wavelengths (colors) by using a diffraction grating and shoe box to create and measure a visible spectrum. The concepts of diffraction, electromagnetic waves, wavelength, and the electromagnetic spectrum are introduced. The activity also includes a discussion of red shift, blue shift, and the Doppler effect. Information about solar radiation and the roles of stratospheric and tropospheric ozone is included.
In this activity, students use the binary number system to transmit messages. …
In this activity, students use the binary number system to transmit messages. Two flashlights are used to demonstrate how astronomy spacecraft to transmit images and other scientific data to Earth. This activity is part of Unit 4 in the Space Based Astronomy guide that contains background information, worksheets, assessments, extensions, and standards.
Students identify the actual colors of objects bathed in monochromatic light and …
Students identify the actual colors of objects bathed in monochromatic light and learn how three colors of light can be combined to produce colors ranging from black to white. Students see how space observatories make use of monochromatic filters to collect data on the color of objects in space. The activity is in unit four of the "Space-Based Astronomy" guide that contains background information, worksheets, assessment activities, extensions, and alignment to national education standards.
In this activity, students simulate how light collected from a space object …
In this activity, students simulate how light collected from a space object converts into binary data and reconverts into an image of the object. A pencil and paper activity demonstrates how astronomical spacecraft and computers create images of objects in space. This activity is part of Unit 4 in the Space Based Astronomy guide that contains background information, worksheets, assessments, extensions, and standards.
In this video adapted from ANDRILL, find out how geoscientists get through …
In this video adapted from ANDRILL, find out how geoscientists get through more than a dozen football fields of ice and water in order to study the rock and sediment beneath Antarctica.
In this video profile produced for Teachers' Domain, meet teacher Dustin Madden, …
In this video profile produced for Teachers' Domain, meet teacher Dustin Madden, an IŰ__óíupiaq who hopes to inspire students to take an active role in protecting the natural environment by giving them a foundation in math and science.
This web page features a collection of Easy Java Simulations developed by …
This web page features a collection of Easy Java Simulations developed by secondary teachers for use in introductory high school physics courses. Topics include astronomy, momentum and collision, projectile motion, Gauss's Law and electric field, special relativity, and more. Each simulation is accompanied by a standards-based lesson plan and printable student guides. Users may run the simulations as a Java applet or may directly download a jar file version. The materials in this collection were created with Easy Java Simulations (EJS), a modeling tool that allows users without formal programming experience to generate computer models and simulations. To modify or customize the model, See Related Materials for detailed instructions on installing and running the EJS Modeling and Authoring Tool. This resource is part of Project ITOP (Improving the Teaching of Physics), a graduate program offered at University of Massachusetts-Boston. The archived computer models are hosted and maintained as part of the BU Physics Simulation collection.
This is an activity about planetary sizes and distances. Learners will construct …
This is an activity about planetary sizes and distances. Learners will construct a scale model of the Earth, Earth’s Moon and Mars in relation to each other using balloons. They will use this model to predict distances and reflect on how scientists use models to construct explanations through the scientific process. The lesson models scientific inquiry using the 5E instructional model and includes teacher notesand vocabulary.
In this activity, students play the roles of "time travel agents" creating …
In this activity, students play the roles of "time travel agents" creating an advertisement for a geologic time period which has been assigned to them. They will use the Earth Science Reference Tables (available on the internet) to learn some basic facts about their assigned period. A rubric for assessing student understanding is provided.
This is a wallsheet that contains 11 activities relating to Mars. Learners …
This is a wallsheet that contains 11 activities relating to Mars. Learners could investigate: how far away is Mars, why does Mars have craters, water on Mars, Mars' minerals, how high the mountains are on Mars, and are invited to create a martian calendar and travel guide.
This lesson discusses the interior structure of the earth as defined by …
This lesson discusses the interior structure of the earth as defined by research on the behavior of seismic waves as they move through the layers inside of the planet. The lesson details both compositional layers as well as mechanical layers.
This video segment adapted from NASA's Goddard Space Flight Center discusses how …
This video segment adapted from NASA's Goddard Space Flight Center discusses how a drought can have negative effects locally, for example by increasing the number of forest fires, and also globally, for example by impacting air quality thousands of miles away.
This video segment adapted from NASA's Goddard Space Flight Center describes El …
This video segment adapted from NASA's Goddard Space Flight Center describes El Niño, how it forms, and the chain reaction of consequences it triggers around the globe.
This video segment adapted from NASA's Goddard Space Flight Center explains how …
This video segment adapted from NASA's Goddard Space Flight Center explains how hurricanes develop and why there are fewer hurricanes in the Atlantic Ocean in strong El Niño years.
This video segment adapted from NASA's Goddard Space Flight Center shows how …
This video segment adapted from NASA's Goddard Space Flight Center shows how integral satellites are to everyday life and describes the different types, including orbital and geostationary.
This is an indoor and outdoor activity where students understand the distance …
This is an indoor and outdoor activity where students understand the distance the earth is from the sun. The students understand that the earth rotates on it's axis once in a 24 hour period thus providing us with day and night.
This is an activity about the relative sizes of the Earth and …
This is an activity about the relative sizes of the Earth and the Moon and the distance between them. Learners will inflate a balloon to the approximate size of the moon in relation to a standard globe. They will then hypothesize as to the correct distance between the two and begin to calculate angular size. This is Astronomy Activity 1 in a larger resource, Space Update.
This interactive activity from the Adler Planetarium explains the reasons for the …
This interactive activity from the Adler Planetarium explains the reasons for the seasons. Featured is a game in which Earth must be properly placed in its orbit in order to send Max, the host, to different parts of the world during particular seasons.
This video segment adapted from NOVA tells the tragic story of two …
This video segment adapted from NOVA tells the tragic story of two Japanese seismologists who disagreed about the threat of earthquakes in the early twentieth century. Today, seismologists in California offer residents a probability of risk that an earthquake might occur.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.