Student projects in D-Lab classes are defined by community partners and social …
Student projects in D-Lab classes are defined by community partners and social ventures around the world. We don’t always know what is needed, but our community partners do, and our students have technical knowledge and skills to contribute to that work. Each semester, through a selection of full-semester classes, our students form into teams to work on projects framed by community partners – NGOs, local nonprofits, and social entrepreneurs. At the end of each semester, students present their work to their peers, partners, and guests.
Through eight lessons, students are introduced to many facets of dams, including …
Through eight lessons, students are introduced to many facets of dams, including their basic components, the common types (all designed to resist strong forces), their primary benefits (electricity generation, water supply, flood control, irrigation, recreation), and their importance (historically, currently and globally). Through an introduction to kinetic and potential energy, students come to understand how dams generate electricity. They learn about the structure, function and purpose of locks, which involves an introduction to Pascal's law, water pressure and gravity. Other lessons introduce students to common environmental impacts of dams and the engineering approaches to address them. They learn about the life cycle of salmon and the many engineered dam structures that aid in their river passage, as they think of their own methods and devices that could help fish migrate past dams. Students learn how dams and reservoirs become part of the Earth's hydrologic cycle, focusing on the role of evaporation. To conclude, students learn that dams do not last forever; they require ongoing maintenance, occasionally fail or succumb to "old age," or are no longer needed, and are sometimes removed. Through associated hands-on activities, students track their personal water usage; use clay and plastic containers to model and test four types of dam structures; use paper cups and water to learn about water pressure and Pascal's Law; explore kinetic energy by creating their own experimental waterwheel from two-liter plastic bottles; collect and count a stream's insects to gauge its health; play an animated PowerPoint game to quiz their understanding of the salmon life cycle and fish ladders; run a weeklong experiment to measure water evaporation and graph their data; and research eight dams to find out and compare their original purposes, current status, reservoir capacity and lifespan. Woven throughout the unit is a continuing hypothetical scenario in which students act as consulting engineers with a Splash Engineering firm, assisting Thirsty County in designing a dam for Birdseye River.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Cancer cells are abnormal cells that rapidly proliferate and often find ways to evade the immune system’s attempts to stop them. Such cells often overexpress the genes MYC and ARF6 and have a mutated version of the KRAS gene. These changes are inextricably linked and result in significant resistance to cancer therapies. KRAS activates MYC gene expression and possibly promotes the translation of the messenger RNA for both MYC and ARF6. Then MYC induces expression of genes related to mitochondrial formation and energy production. Meanwhile, ARF6 protects the mitochondria from oxidation-induced injury. ARF6 may also promote cancer invasion, metastasis, and immune evasion. Thus, KRAS, MYC, and ARF6 cooperate to help cancer spread and to avoid the immune system and immune-based treatments. These harmful associations are common in pancreatic cancer and can be strengthened by mutations in other genes like TP53..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Students research electricity, its sources, how energy grids function, how to make …
Students research electricity, its sources, how energy grids function, how to make grids most efficient, and how to bring different types of energy generation together to diversify grids. Students debate the costs and benefits of moving to a modernized Smart Grid.
In this lesson, students learn that sound is energy and has the …
In this lesson, students learn that sound is energy and has the ability to do work. Students discover that sound is produced by a vibration and they observe soundwaves and how they travel through mediums. They understand that sound can be absorbed, reflected or transmitted. Through associated activities, videos and a PowerPoint presentation led by the teacher, students further their exploration of sound through discussions in order to build background knowledge.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹlearn about the fundamentals of sound as student teams create percussive and stringed instruments for a local band.
Students create a concept design of their very own net-zero energy classroom …
Students create a concept design of their very own net-zero energy classroom by pasting renewable energy and energy-efficiency items into and around a pretend classroom on a sheet of paper. They learn how these items (such as solar panels, efficient lights, computers, energy meters, etc.) interact to create a learning environment that produces as much energy as it uses.
Students will design the integration of renewable or carbon neutral energy sources …
Students will design the integration of renewable or carbon neutral energy sources into the electricity generation mix of an example utility. The structure is a budget or a design or maybe even a puzzle where all the pieces of electricity generation must add up to demand and simultaneously comply with state and federal emissions regulations and renewable energy targets. The puzzle is similar in style to Princeton's well-known "Stabilization Wedges" activity [see Ref. 1]. Enough of the complications are present that students will experience why the switch from coal is so slow and how dynamic the economic and policy environment is. This module can be a one-week capstone of a full course on energy, policy, and sustainability or a two-week focus unit within a broader course if wind, solar, transmission, and storage are intermixed because they were not already covered separately.
The course considers the growing popularity of sustainability and its implications for …
The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.
Students determine the energy efficiency of different methods of heating substances in …
Students determine the energy efficiency of different methods of heating substances in the lab and then assess the economic and environmental costs.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This activity illustrates the carbon cycle using an age-appropriate hook, and it …
This activity illustrates the carbon cycle using an age-appropriate hook, and it includes thorough discussion and hands-on experimentation. Students learn about the geological (ancient) carbon cycle; they investigate the role of dinosaurs in the carbon cycle, and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful carbon dioxide emissions.
Direct Energy Conversion discusses both the physics behind energy conversion processes and …
Direct Energy Conversion discusses both the physics behind energy conversion processes and a wide variety of energy conversion devices. A direct energy conversion process converts one form of energy to another through a single process. The first half of this book surveys multiple devices that convert to or from electricity including piezoelectric devices, antennas, solar cells, light emitting diodes, lasers, thermoelectric devices, and batteries. In these chapters, physical effects are discussed, terminology used by engineers in the discipline is introduced, and insights into material selection is studied. The second part of this book puts concepts of energy conversion in a more abstract framework. These chapters introduce the idea of calculus of variations and illuminate relationships between energy conversion processes.
This is a STEM activity to learn how different colors absorb light …
This is a STEM activity to learn how different colors absorb light better than others. Vocabulary and investigating questions are included to facilitate discussion, and a rubric is provided for assessment.
In this video from Young Voices for the Planet, four middle-school girls …
In this video from Young Voices for the Planet, four middle-school girls (The Green Team) talk about their efforts to work with their peers to reduce the carbon footprint of their school and how they made the school more energy efficient.
Environmental protection is a prerequisite for survival on this planet. This Mini …
Environmental protection is a prerequisite for survival on this planet. This Mini Lecture explores questions of sustainability, environment, energy supply and peace. Lecture snippets of Nobel Laureates Willy Brandt, Frank Sherwood Rowland und Paul Crutzen are presented, who address these issues in their research.
The Climate 101 presentation was developed by Brandon Leshchinskiy in collaboration with …
The Climate 101 presentation was developed by Brandon Leshchinskiy in collaboration with Professor Dava Newman, MIT Portugal, and EarthDNA in an effort to mobilize young people as educators on the issue of climate change. The presentation addresses not only the science but also the economics and civics of climate change, incorporating a negotiation activity that brings key concepts to life. This resource includes the slides and instructions for the presentation, along with an introductory video from Prof. Newman, a video of Leshchinskiy actually delivering the presentation to a classroom full of students, and extensive supporting materials that will help users to become climate ambassadors and deliver the Climate 101 presentation themselves.
CK-12 Earth Science For High School covers the study of Earth - …
CK-12 Earth Science For High School covers the study of Earth - its minerals and energy resources, processes inside and on its surface, its past, water, weather and climate, the environment and human actions, and astronomy.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.