This course will focus on providing students with the tools needed to …
This course will focus on providing students with the tools needed to practice responsible architecture in a contemporary context. It will familiarize students with the materials currently used in responsible practice, as well as the material properties most relevant to assembly. The course will also introduce students to materials that are untested but hold promise for future usage. Finally, the course will challenge students to refine their understanding of responsible or sustainable design practice by looking at the evolution of those ideas within the field of architecture.
Students learn about the engineering design process and how it is used …
Students learn about the engineering design process and how it is used to engineer products for everyday use. Students individually brainstorm solutions for sorting coins and draw at least two design ideas. They work in small groups to combine ideas and build a coin sorter using common construction materials such as cardboard, tape, straws and fabric. Students test their coin sorters, make revisions and suggest ways to improve their designs. By designing, building, testing and improving coin sorters, students come to understand how the engineering design process is used to engineer products that benefit society.
This lesson presents characteristics of spacecraft models on mars to see how …
This lesson presents characteristics of spacecraft models on mars to see how well they meet design requirements and then presents a design challenge for students.
Students are introduced to polymer science and take on the role of …
Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.
Students learn about applied forces as they create pop-up-books the art of …
Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
The purpose of this activity is to demonstrate the importance of rocks, …
The purpose of this activity is to demonstrate the importance of rocks, soils and minerals in engineering and how using the right material for the right job is important. The students build three different sand castles and test them for strength and resistance to weathering. Then, they discuss how the buildings are different and what engineers need to think about when using rocks, soils and minerals for construction.
In this service-learning engineering project, students follow the steps of the engineering …
In this service-learning engineering project, students follow the steps of the engineering design process to design an assistive eating device for a client. More specifically, they design a prototype device to help a young girl who has a medical condition that restricts the motion of her joints. Her wish is to eat her favorite food, pizza, without getting her nose wet. Students learn about arthrogryposis and how it affects the human body as they act as engineers to find a solution to this open-ended design challenge and build a working prototype. This project works even better if you arrange for a client in your own community.
Students begin by reading Dr. Seuss' "The Lorax" as an example of …
Students begin by reading Dr. Seuss' "The Lorax" as an example of how overdevelopment can cause long-lasting environmental destruction. Students discuss how to balance the needs of the environment with the needs of human industry. Student teams are asked to serve as natural resource engineers, city planning engineers and civil engineers with the task to replant the nearly destroyed forest and develop a sustainable community design that can co-exist with the re-established natural area.
This class explores the foundations of the environmental justice movement, current and …
This class explores the foundations of the environmental justice movement, current and emerging issues, and the application of environmental justice analysis to environmental policy and planning. It examines claims made by diverse groups along with the policy and civil society responses that address perceived inequity and injustice. While focused mainly on the United States, international issues and perspectives are also considered.
The Essential Project Design Elements Checklist can be used for a quick …
The Essential Project Design Elements Checklist can be used for a quick evaluation of a project's design, to see if it includes all the essential elements of rigorous, effective PBL.This checklist is a user-friendly tool, and based on our Project Design Rubric.Use this tool before, during, and after designing projects to check on their quality. Also helpful for communicating the meaning of PBL to various audiences.
Ontwerpen is een combinatie van logisch redeneren en het creatief combineren van …
Ontwerpen is een combinatie van logisch redeneren en het creatief combineren van bestaande technieken om tot nieuwe, innovatieve ideeen te komen. Een goede werktuigkundig ontwerper put zijn creativiteit uit kennis van een groot aantal bestaande werktuigbouwkundige systemen. Hoe groter die kennis, hoe groter de kans dat nieuwe, innovatieve ontwerpconcepten ontstaan. Vooral kennis over niet-conventionele techniek bevordert dit creatieve ontwerpproces.
Het doel van het vak Evolving Design is om studenten de onderhavige werkprincipes te tonen van een grote hoeveelheid niet-conventionele werktuigbouwkundige systemen. Er wordt hierbij zowel gekeken naar bijzondere ontdekkingen uit het verleden als uit het heden, met een blik op de toekomst. De ontwerpprincipes worden niet simpelweg opgesomd, maar geplaatst in hun fascinerende, historische ontwikkeling om te laten zien hoe de ontwerpers hun creativiteit en vernuft gebruik(t)en om goedwerkende oplossingen te vinden binnen de beperkingen van de beschikbare fabricageprocessen en beschermingsmogelijkheden (patenten). Veel oplossingen uit het verleden zijn klaar om te worden toegepast in de technologie van de toekomst!
Het vak richt zich primair op het kwalitatief beschrijven van de werkprincipes van bestaande technologieen, met de nadruk op bewegende mechanische constructies. Hoewel het kwantatief, in detail uitwerken van de kracht-bewegingsvergelijkingen niet het hoofddoel van het vak is, zijn mechanische vergelijkingen wel essentieel als zij leiden tot een beter begrip.
This course uses scale models to design environments that orchestrate contrasting material …
This course uses scale models to design environments that orchestrate contrasting material properties and conventional constructional systems to create places that foster specific ways of inhabiting space. It also demonstrates how architecture differs from other forms of design. Intended for students to test aptitude for architectural design and to experience an unfamiliar mode of thought, it’s conducted in a studio format, with lectures on architectural theory and history, and structured for students with no previous experience in design. Required of Architecture majors.
The Experimental Project Lab in the Department of Aeronautics and Astronautics is …
The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I (this course) and 16.622 Experimental Projects II. This site offers material on 16.621. In the course, two-person teams initiate a project of their own conception and design in 16.621 and then complete it in 16.622. For many students, this is a first encounter with research standards and techniques. It is a complicated course that requires a lot of interaction and support and also access to facilities and materials, but it is rewarding for students to explore an hypothesis under the guidance of a faculty advisor. This OCW site presents the building block materials of the course, which can provide only a profile of the course because the most important learning elements are the interactions between student team, faculty, project advisor, and shop staff and also between student team members. However, this site offers some of the preparation and guidance materials for students embarking on an experimental project. To emphasize the focus on communication skills, a set of study materials and examples of student work are provided.
The Experimental Project Lab in the Department of Aeronautics and Astronautics is …
The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I and 16.622 Experimental Projects II (this course). Students in 16.622 gain practical insight and improved understanding of engineering experimentation through design and execution of “project” experiments. Building upon work in course 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Deliverables comprise a written final project report and formal oral presentations. Instructions on oral presentations and multi-section reporting are given. Experimental Projects I and II provide a valuable link between theory (16.621) and practice (16.622).
Students are introduced to the five fundamental loads: compression, tension, shear, bending …
Students are introduced to the five fundamental loads: compression, tension, shear, bending and torsion. They learn about the different kinds of stress each force exerts on objects.
Students drop water from different heights to demonstrate the conversion of water's …
Students drop water from different heights to demonstrate the conversion of water's potential energy to kinetic energy. They see how varying the height from which water is dropped affects the splash size. They follow good experiment protocol, take measurements, calculate averages and graph results. In seeing how falling water can be used to do work, they also learn how this energy transformation figures into the engineering design and construction of hydroelectric power plants, dams and reservoirs.
This SoftChalk is used to walk through the family life cycle as …
This SoftChalk is used to walk through the family life cycle as it pertains to housing. It tells what milestones can happen in this stage, and gives an examples of a family working through these stages.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.