This National Geographic video explains the origins of the El NiÃo Southern …
This National Geographic video explains the origins of the El NiÃo Southern Oscillation using animations and shows the impacts on humans, wildlife and habitat, particularly in the United States.
This video explains what El NiÃo is and provides the definition of …
This video explains what El NiÃo is and provides the definition of El NiÃo. It goes into detail about the devastating terrestrial and aquatic effects an El NiÃo can have on living organisms and the climate (disease, storms, floods, tornadoes, drought, wildfire, increased air temperatures, decreased water temperatures, etc).
This short video illustrates the phenomena of El NiÃo and La NiÃa: …
This short video illustrates the phenomena of El NiÃo and La NiÃa: their relationships to tradewinds and surface water temperatures, and their effects on precipitation in North America.
This activity investigates the oceanographic and climatic characteristics of El NiÃo/La NiÃa …
This activity investigates the oceanographic and climatic characteristics of El NiÃo/La NiÃa (ENSO) events using observational data from moored ocean buoys in the tropical Pacific Ocean. Data are obtained from NOAA's Tropical Atmosphere Ocean (TAO) project website which provides a web-based interface for accessing and displaying oceanographic data. In addition to providing an introduction to ENSO, this activity is designed to give students practice interpreting real oceanographic observations by emphasizing the description and identification of patterns in large data-sets. Students first describe patterns in sea-surface and cross-sectional transects of ocean temperatures and surface winds associated with "normal", El NiÃo, and La NiÃa years and then use this as a basis for classifying observations from unknown years and interpreting connections between oceanographic and atmospheric processes occurring in the tropical Pacific.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is a hands-on lab activity about the chemical composition and conductivity …
This is a hands-on lab activity about the chemical composition and conductivity of water. Working in groups, learners will: conduct an experiment involving the process of electrolysis, prepare an experiment to better understand the process of ion exchange, discuss and research the "softness" and "hardness" of water, and use the periodic table to identify elements and learn their characteristics. Background information, a glossary and more is included. Materials needed for each student group include a 9-volt battery, two electrodes (e.g. copper strips, or two #2 pencils sharpened at both ends), electrical wire and glass beakers or ceramic saucers. This activity is part of the Aquarius Hands-on Laboratory Activities.
Through learning activities, students learn how weather over a long period of …
Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.
This is a field and computer laboratory exercise that introduces undergraduate students, …
This is a field and computer laboratory exercise that introduces undergraduate students, advanced high school students, and members of the general public to using Google Earth, GPS, aerial imagery, and an online illustrated vegetation and tidal marsh environment identification guide to distinguish and map vegetational and physical environmental zones within a salt marsh. They also learn about the physical and ecological relationships between these environments.
Students use GPS devices to collect field data as waypoints and tracks, and upload the data to computers in GPX format. They learn to open the data in Google Earth along with infrared and color aerial imagery, and use the GPS data to interpret the aerial imagery. Using Google Earth tools, they draw polygons to demarcate the boundaries of environmental zones in the wetlands that they recognize on the imagery.
The students and instructors also take photographs of the students in each of these environmental zones and embed the photographs into information balloons of placemarks in Google Earth.
The exercise was originally designed for use at Flax Pond, a salt marsh on the North Shore of Long Island. However, it can easily be adapted for use in other tidal marshes, and can serve as a template for developing similar activities to be conducted at other locations in which aerial imagery can be used to distinguish various forms of land cover.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students cooperatively conduct original research in Marine Geology utilizing marine practices on …
Students cooperatively conduct original research in Marine Geology utilizing marine practices on Lake Champlain, NY - Vermont. The lab section of the course is used to develop and implement a research project. The students are given a research question to solve. To proceed, they must first review all available literature and then design a research program. They then implement that program using marine and laboratory equipment that is available to them and report on their outcomes after a semester-long investigation.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The year is 2050 and your once-idyllic beachfront vacation home is now …
The year is 2050 and your once-idyllic beachfront vacation home is now flooded up to the second story. The crab your family has enjoyed every Christmas for as long as you can remember has now become an endangered species. The oceans have changed. In Earth 540, Oceanography for Educators, we explore the mechanisms that lead to sea level rise and ocean acidification. We strive to understand how natural processes such as ocean currents, the gulf-stream, tides, plate tectonics, and the Coriolis Effect, affect our oceans and ocean basins. We then predict how man-made issues such as climate change and overfishing will affect our beloved waters and our livelihoods. Want to see into the future? Then this course is for you!
The year is 2050 and your once-idyllic beachfront vacation home is now …
The year is 2050 and your once-idyllic beachfront vacation home is now flooded up to the second story. The crab your family has enjoyed every Christmas for as long as you can remember has now become an endangered species. The oceans have changed. In Earth 540, Oceanography for Educators, we explore the mechanisms that lead to sea level rise and ocean acidification. We strive to understand how natural processes such as ocean currents, the gulf-stream, tides, plate tectonics, and the Coriolis Effect, affect our oceans and ocean basins. We then predict how man-made issues such as climate change and overfishing will affect our beloved waters and our livelihoods. Want to see into the future? Then this course is for you!
This is a static visualization, referenced from a UNEP rapid response assessment …
This is a static visualization, referenced from a UNEP rapid response assessment report entitled In Dead Water, depicting the estimated contributions to sea-level rise from 1993 - 2003.
In this computer lab, students use satellite imagery, daylength information, and phytoplankton …
In this computer lab, students use satellite imagery, daylength information, and phytoplankton physiology models to calculate annual primary production for an assigned ocean region.
Satellite data is obtained from the NASA Earth Observation website. Students use the analysis tool to determine chlorophyll concentration and sea surface temperature. They also receive a day-length calculator and are asked to model light transmission through the water column. Using step-by-step instructions and proviede equations relating phytoplankton physiology to irradiance and temperature students calculate carbon uptake at discreet locations in the water column. The second half of the exercise involves scaling up to the entire water column, region, and season. Students present their work to the class and evaluate their result using scientific literature. Differences between regions are then discussed by the class.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this in-class exercise, students compare several lines of evidence that support …
In this in-class exercise, students compare several lines of evidence that support the ideas of continental drift and plate tectonics. Before the class meeting, each student is given a preparation assignment in which he/she studies one "continental drift" and one "ocean floor data" map. In class, students divide into teams of 3, with each team member having prepared different specialties. They discuss their respective maps and look for spatial patterns among the data.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students observe the process of evaporation, make comparisons about the process, then …
Students observe the process of evaporation, make comparisons about the process, then construct a diagram and use it to describe the process of evaporation.
This is a hands-on lab activity about evaporation. Learners will conduct experiments …
This is a hands-on lab activity about evaporation. Learners will conduct experiments to observe the process of evaporation. They will then describe the process of evaporation, and the general water cycle, through discussion and pictures. Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities.
Evolution of Physical Oceanography was created to mark the career of Henry …
Evolution of Physical Oceanography was created to mark the career of Henry M. Stommel, the leading physical oceanographer of the 20th Century and a longtime MIT faculty member. The authors of the different chapters were asked to describe the evolution of their subject over the history of physical oceanography, and to provide a survey of the state-of-the-art of their subject as of 1980. Many of the chapters in this textbook are still up-to-date descriptions of active scientific fields, and all of them are important historical records. This textbook is made available courtesy of The MIT Press.
In this activity, students make and manipulate physical shoreline models to discover …
In this activity, students make and manipulate physical shoreline models to discover the features of resilient shorelines and to critically evaluate the impacts of rising seas. Students will use NOAA's Sea Level Rise Viewer to observe a coastal area of interest and predict the consequences of sea level rise on people, the environment, and the economy. Though the curriculum references North Carolina, this lesson will work for all coastal areas.
This activity requires students to explore a range of datasets that help …
This activity requires students to explore a range of datasets that help substantiate Plate Tectonic Theory. Students investigate plate tectonic environments (convergent, divergent, transform boundaries), topography/bathymetry of continents and ocean basins, the distribution and pattern of earthquakes, the distribution of volcanoes, as well as ages of the sea-floor, and more.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.