In this activity, students participate in a series of timed relay races …
In this activity, students participate in a series of timed relay races using their skeletal muscles. The compare the movement of skeletal muscle and relate how engineers help astronauts exercise skeletal muscles in space.
After students have complete the associated activity to collect and graph acceleration …
After students have complete the associated activity to collect and graph acceleration data from walking human subjects, they learn more about gait analysis---the study of human motion, which is used as biometric data for human medical diagnostics and (non-human) comparative biomechanics. They learn about the steps that comprise the universal process of engineering analysisâdata collection, data analysis, mathematical modeling and reportingâand consider how these steps could be applied to analyze a person's gait, which prepares them to conduct the second associated activity.
Prepared with pre-algebra or algebra 1 classes in mind, this module leads …
Prepared with pre-algebra or algebra 1 classes in mind, this module leads students through the process of graphing data and finding a line of best fit while exploring the characteristics of linear equations in algebraic and graphic formats. Then, these topics are connected to real-world experiences in which people use linear functions. During the module, students use these scientific concepts to solve the following hypothetical challenge: You are a new researcher in a lab, and your boss has just given you your first task to analyze a set of data. It being your first assignment, you ask an undergraduate student working in your lab to help you figure it out. She responds that you must determine what the data represents and then find an equation that models the data. You believe that you will be able to determine what the data represents on your own, but you ask for further help modeling the data. In response, she says she is not completely sure how to do it, but gives a list of equations that may fit the data. This module is built around the legacy cycle, a format that incorporates educational research feindings on how people best learn.
Students observe and discuss a simple model of a wet scrubber to …
Students observe and discuss a simple model of a wet scrubber to understand how this pollutant recovery method functions in cleaning industrial air pollution.
People use energy in all aspects of their lives for cooking, lighting …
People use energy in all aspects of their lives for cooking, lighting and entertainment. Much of this energy use takes place in buildings, such as our homes. To save money and reduce the impact on our environment, many people are reducing their energy use. One way is to hire engineers to perform home energy audits to understand the ways we use energy and identify ways we can conserve energy. In this activity, students act as energy conservation engineers and identify the ways energy is conserved or wasted. They also learn many ways to personally conserve energy everyday.
Students use inclined planes as they recreate the difficult task of raising …
Students use inclined planes as they recreate the difficult task of raising a monolith of rock to build a pyramid. They compare the push and pull of different-sized blocks up an inclined plane, determine the angle of inclination, and learn the changes that happen when the angle is increased or decreased.
In this service-learning engineering project, students follow the steps of the engineering …
In this service-learning engineering project, students follow the steps of the engineering design process to design a hearing testing device. More specifically, they design a prototype machine that can be used to test the peripheral vision of partially-blind, pre-verbal children. Students learn about the basics of vision and vision loss. They also learn how a peripheral vision tester for adults works (by testing the static peripheral vision in the four quadrants of the visual field with four controllable lights in specific locations). Then they modify the idea of the adult peripheral vision tester to make it usable for testing young children. The class designs and builds one complete prototype, working in sub-groups of four or five students each to build sub-components of the project design.
Students use a thermal process approach to design, build and test a …
Students use a thermal process approach to design, build and test a small-scale desalination plant that is capable of significantly removing the salt content from a saltwater solution. Students use a saltwater circuit to test the efficiency of their model desalination plant and learn how the water cycle is the basis for the thermal processes that drive their desalination plant.
Students are asked to design methods to filter water using ordinary materials, …
Students are asked to design methods to filter water using ordinary materials, while also considering their designs' material and cost efficiencies. They learn about the importance of water and its role in our everyday lives. They come to understand what must occur each day so that they can have clean water.
Students observe a model waterwheel to investigate the transformations of energy involved …
Students observe a model waterwheel to investigate the transformations of energy involved in turning the blades of a hydro-turbine. Students work as engineers to create model waterwheels while considering resources such as time and materials, in their design. Students also discuss and explore the characteristics of hydropower plants.
Students measure the effectiveness of water filters in purifying contaminated water. They …
Students measure the effectiveness of water filters in purifying contaminated water. They prepare test water by creating different concentrations of bleach (chlorine-contaminated) water. After passing the contaminated water through commercially available Brita® water filters designed to purify drinking water, students determine the chlorine concentration of the purified water using chlorine test strips and measure the adsorption of chlorine onto activated carbon over time. They graph and analyze their results to determine the effectiveness of the filters. The household active carbon filters used are one example of engineer-designed water purification systems.
Students learn about floods, discovering that different types of floods occur from …
Students learn about floods, discovering that different types of floods occur from different water sources, but primarily from heavy rainfall. While floods occur naturally and have benefits such as creating fertile farmland, students learn that with the increase in human population in flood-prone areas, floods are become increasingly problematic. Both natural and manmade factors contribute to floods. Students learn what makes floods dangerous and what engineers design to predict, control and survive floods.
Students learn about the importance of dams by watching a video that …
Students learn about the importance of dams by watching a video that presents historical and current information on dams, as well as descriptions of global water resources and the hydrologic cycle. Students also learn about different types of dams, all designed to resist the forces on dams. (If the free, 15-minute "Water and Dams in Today's World" video cannot be obtained in time, the lesson can still be taught. See the Additional Multimedia Support section for how to obtain the DVD or VHS videotape, or a PowerPoint presentation with similar content [also attached].)
Students learn about the water cycle and its key components. First, they …
Students learn about the water cycle and its key components. First, they learn about the concept of a watershed and why it is important in the context of engineering hydrology. Then they learn how we can use the theory of conservation of mass to estimate the amount of water that enters a watershed (precipitation, groundwater flowing in) and exits a watershed (evaporation, runoff, groundwater out). Finally, students learn about runoff and how we visualize runoff in the form of hydrographs.
Students learn the history of the waterwheel and common uses for water …
Students learn the history of the waterwheel and common uses for water turbines today. They explore kinetic energy by creating their own experimental waterwheel from a two-liter plastic bottle. They investigate the transformations of energy involved in turning the blades of a hydro-turbine into work, and experiment with how weight affects the rotational rate of the waterwheel. Students also discuss and explore the characteristics of hydroelectric plants.
Students apply everything they have learned over the course of the associated …
Students apply everything they have learned over the course of the associated lessons about waves, light properties, the electromagnetic spectrum, and the structure of the eye, by designing devices that can aid color blind people in distinguishing colors. Students learn about the engineering design process and develop three possible solutions to the engineering design challenge outlined in lesson 1 of this unit. They create posters to display their three design ideas and the comparisons used to select the best design. Then, students create brochures for their final design ideas, and "sell" the ideas to their "client." Through this activity, students complete the legacy cycle by "going public" with the creation of their informative posters and brochures that explain their designs, as well as color blindness and how people see color, in "client" presentations.
Students are presented with a challenge question concerning color blindness and asked …
Students are presented with a challenge question concerning color blindness and asked to use engineering principles to design devices to help people who are color blind. Using the legacy cycle as a model, this unit is comprised of five lessons designed to teach wave properties, the electromagnetic spectrum, and the anatomy of the human eye in an interactive format that introduces engineering applications and real-world references. It culminates with an activity in which student teams apply what they have learned to design devices that can aid people with colorblindness in distinguishing colors— as evidenced by their creation of brainstorming posters, descriptive brochures and short team presentations, as if they were engineers reporting to clients. Through this unit, students become more aware of the connections between the biology of the eye and the physical science concept of light, and gain an understanding of how those scientific concepts relate to the field of engineering.
Students learn about the types of waves and how they change direction, …
Students learn about the types of waves and how they change direction, as well as basic wave properties such as wavelength, frequency, amplitude and speed. During the presentation of lecture information on wave characteristics and properties, students take notes using a handout. Then they label wave parts on a worksheet diagram and draw their own waves with specified properties (crest, trough and wavelength). They also make observations about the waves they drew to determine which has the highest and the lowest frequency. With this knowledge, students better understand waves and are a step closer to understanding how humans see color.
Building on an introduction to statics, dynamics free-body diagrams, combustion and thermodynamics …
Building on an introduction to statics, dynamics free-body diagrams, combustion and thermodynamics provided by the associated lesson, students design, construct and test their own rocket engines using sugar and potassium nitrate an opportunity to apply their knowledge of stoichiometry. This activity helps students understand that the energy required to launch a rocket comes from the chemical energy stored in the rocket fuel. The performance of each engine is tested during a rocket launch, after which students determine the reasons for the success or failure of their rockets.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.