Updating search results...

Search Resources

1449 Results

View
Selected filters:
  • TeachEngineering
Using Hooke's Law to Understand Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the response of springs to forces as a way to begin to understand elastic solid behavior. They gain experience in data collection, spring constant calculation, and comparison and interpretation of graphs and material properties to elucidate material behavior. Conduct this activity before proceeding to the associated lesson.

Subject:
Applied Science
Engineering
Geoscience
Life Science
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014
Using JUnit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students focus on the testing phase of the design process by considering how they have tested computer programs in the past and learning about a new method called JUnit to test programs in the future. JUnit is a testing method that is included with NetBeans (Java) installs or can be downloaded from the web and included in the Java build. Students design tests using JUnit and implement those tests.

Subject:
Applied Science
Computing and Information
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Ryan Stejskal
Date Added:
09/18/2014
Using Nanoparticles to Detect, Treat and Protect against Skin Cancer
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit on nanoparticles engages students with a hypothetical Grand Challenge Question that asks about the skin cancer risk for someone living in Australia, given the local UV index and the condition of the region's ozone layer. The question asks how nanoparticles might be used to help detect, treat and protect people from skin cancer. Through three lessons, students learn about the science of electromagnetic radiation and energy waves, human skin and its response to ultraviolet radiation, and the state of medical nanotechnology related to skin cancer. Through three hands-on activities, students perform flame tests to become familiar with the transfer of energy in quantum form, design and conduct their own quality-control experiments to test sun protection factors (SPFs), and write nanotechnology grant proposals.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Using Spectral Data to Explore Saturn and Titan
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use authentic spectral data from the Cassini mission of Saturn and Saturn's moon, Titan, gathered by instrumentation developed by engineers. Taking these unknown data, and comparing it with known data, students determine the chemical composition of Saturn's rings and Titan's atmosphere.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Using Stress and Strain to Detect Cancer!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a biomedical engineering challenge: Breast cancer is the second-leading cause of cancer-related death among women and the American Cancer Society says mammography is the best early-detection tool available. Despite this, many women choose not to have them; of all American women at or over age 40, only 54.9% have had a mammogram within the past year. One reason women skip annual mammograms is pain, with 90% reporting discomfort. Is there a way to detect the presence of tumors that is not as painful as mammography but more reliable and quantifiable than breast self-exams or clinical breast exams? This three lesson/three activity unit is designed for first-year accelerated or AP physics classes. It provide hands-on activities to teach the concepts of stress, strain and Hooke's law, which students apply to solve the challenge problem.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Using Waits, Loops and Switches
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a difficult challenge that requires they integrate what they have learned so far in the unit about wait blocks, loops and switches. They incorporate these tools into their programming of the LEGO MINDSTORMS(TM) NXT robots to perform different tasks depending on input from a sound sensor and two touch sensors. This activity helps students understand how similar logic is implemented for other every day device operations via computer programs. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Satish S. Nair
Date Added:
09/18/2014
Using a Fancy Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the spectrograph from the "Building a Fancy Spectrograph" activity to gather data about different light sources. Using the data, they make comparisons between the light sources and make conjectures about the composition of these sources.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Date Added:
10/14/2015
Variables and Graphs: What's Our Story?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to quickly and efficiently interpret graphs, which are used for everyday purposes as well as engineering analysis. Through a practice handout completed as a class and a worksheet completed in small groups, students gain familiarity in talking about and interpreting graphs. They use common graph terminology such as independent variable, dependent variable, linear data, linear relationship and rate of change. The equation for calculating slope is explained. The focus is on students becoming able to clearly describe linear relationships by using the language of slope and the rate of change between variables. At lesson end, students discuss the relationship between variables as presented by the visual representation of a graph. Then they independently complete a homework handout.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Vector Voyage!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will use vector analysis to understand the concept of dead reckoning. Students will use vectors to plot their course based on a time and speed. They will then correct the positions with vectors representing winds and currents.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
09/26/2008
Viking Ship Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

In this design challenge, students learn about the Vikings from an engineering point-of-view. While investigating the history and anatomy of Viking ships, they learn how engineering solutions are shaped by the surrounding environment and availability of resources. Students apply this knowledge to design, build and test their own model Viking ships.

Subject:
Applied Science
Engineering
History
World History
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Viral Hijackers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how viruses invade host cells and hijack the hosts' cell-reproduction mechanisms in order to make new viruses, which can in turn attack additional host cells. Students also learn how the immune system responds to a viral invasion, eventually defeating the viruses -- if all goes well. Finally, they consider the special case of HIV, in which the virus' host cell is a key component of the immune system itself, severely crippling it and ultimately leading to AIDS. The associated activity, Tracking a Virus, sets the stage for this lesson with a dramatic simulation that allows students to see for themselves how quickly a virus can spread through a population, and then challenges students to determine who the initial bearers of the virus were.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Viscoelasticity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of viscoelasticity and some of the material behaviors of viscoelastic materials, including strain rate dependence, stress relaxation, creep, hysteresis and preconditioning. Viscoelastic material behavior is compared to elastic solids and viscous fluids. Students learn about materials that have viscoelastic behavior along with the importance of engineers understanding viscoelasticity. To best engage the students, conduct the first half of the associated Creepy Silly Putty activity before conducting this lesson.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014
Viscosity: The Flow of Milk
Read the Fine Print
Educational Use
Rating
0.0 stars

Students study the physical properties of different fluids and investigate the relationship between the viscosities of liquid and how fast they flow through a confined area. Student groups conduct a brief experiment in which they quantify the flow rate to understand how it relates to a fluid's viscosity and ultimately chemical composition. They explore these properties in milk and cream, which are common fluids whose properties (and even taste!) differ based on fat content. They examine control samples and unknown samples, which they must identify based on how fast they flow. To identify the unknowns requires an understanding of the concept of viscosity. For example, heavy cream flows at a slower rate than skim milk. Ultimately, students gain an understanding of the concept of viscosity and its effect on flow rate.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jasmin Hume
Jennifer Haghpanah
Yeri Park
Date Added:
09/18/2014
Viscous Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the similarities and differences in the behaviors of elastic solids and viscous fluids. Several types of fluid behaviors are described Bingham plastic, Newtonian, shear thinning and shear thickening along with their respective shear stress vs. rate of shearing strain diagrams. In addition, fluid material properties such as viscosity are introduced, along with the methods that engineers use to determine those physical properties.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Michael A. Soltys
Date Added:
09/18/2014
Visible Light and the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the electromagnetic spectrum is explained and students learn that visible light makes up only a portion of this wide spectrum. Students also learn that engineers use electromagnetic waves for many different applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
09/18/2014
Visual Art and Writing in Science and Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the value of writing and art in science and engineering. They acquire vocabulary that is appropriate for explaining visual art and learn about visual design principles (contrast, alignment, repetition and proximity) and elements (lines, color, texture, shape, size, value and space) that are helpful when making visual aids. A PowerPoint(TM) presentation heightens students' awareness of the connection between art and engineering in order to improve the presentation of results, findings, concepts, information and prototype designs. Students also learn about the science and engineering research funding process that relies on effective proposal presentations, as well as some thermal conductivity / heat flow basics including the real-world example of a heat sink which prepares them for the associated activity in which they focus on creating diagrams to communicate their own collected experimental data.

Subject:
Applied Science
Engineering
English Language Arts
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Carnes
Baratunde Cola
Jamila Cola
Satish Kumar
Date Added:
10/14/2015
The Visual Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make simple spectroscopes (prisms) to look at different light sources. The spectroscopes allow students to see differing spectral distributions of different light sources. Students also shine a light source through different materials with varying properties and compare the differences.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
10/14/2015
Visualizing Magnetic Field Lines
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

Subject:
Applied Science
Engineering
Life Science
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Volcanic Panic!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the causes, composition and types of volcanoes. They begin with an overview of the Earth's interior and how volcanoes form. Once students know about how a volcano functions, they learn how engineers predict eruptions. In a class demonstration, students watch and measure a mock volcanic eruption and observe the phases of an eruption, seeing how a volcano gets its shape and provides us with clues to predict a blast.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
09/18/2014
Wait Program!
Read the Fine Print
Educational Use
Rating
0.0 stars

After completing the associated lesson, students test their understanding in two programming tasks that utilize LEGO MINDSTORMS(TM) NXT robots and sound/touch sensors. In the first challenge, students become acquainted with wait blocks by designing programs to simply make robots move forward until "hearing" a noise, and then turn left. The second, more challenging activity pushes students to fully understand the potential of wait blocks. They create programs that make the robots change speed several times when a touch sensor is pressed. Students gain practice in the iterative design-program-test-redesign process. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Satish S. Nair
Date Added:
09/18/2014