Updating search results...

Search Resources

4238 Results

View
Selected filters:
  • Engineering
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Applied Science
Chemistry
Engineering
Genetics
History
History, Law, Politics
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Engineering Polymers from Potatoes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to polymer science and take on the role of chemical engineers to create and test a plastic made from starch. After testing their potato-based plastic, students design a product that takes advantage of the polymer’s unique properties. At the end of the engineering design process, students present their product in a development “pitch” that communicates their idea to potential investors.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Rebecca Hooper
Robin Lewis
Date Added:
02/12/2019
Engineering Pop-Ups
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Engineering Risk-Benefit Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

ERBA (ESD.72) emphasizes three methodologies - reliability and probabilistic risk assessment (RPRA), decision analysis (DA), and cost-benefit analysis (CBA). In this class, the issues of interest are: the risks associated with large engineering projects such as nuclear power reactors, the International Space Station, and critical infrastructures; the development of new products; the design of processes and operations with environmental externalities; and infrastructure renewal projects.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Apostolakis, George
Date Added:
02/01/2007
Engineering: Simple Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Glen Sirakavit
Greg Ramsey
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Engineering Skills through Problem Based Learning
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit uses roller coaster design as a method of teaching students about energy types, energy conservation, and the design process. At the end of this Unit, students’ critical thinking and problem-solving skills should be strengthened.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
North Carolina State University
Provider Set:
Kenan Fellows Program for Curriculum and Leadership Development
Author:
Miriam Morgan
Date Added:
03/03/2016
Engineering Statics: Open and Interactive
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Engineering Statics is a free, open-source textbook appropriate for anyone who wishes to learn more about vectors, forces, moments, static equilibrium, and the properties of shapes. Specifically, it has been written to be the textbook for Engineering Mechanics: Statics, the first course in the Engineering Mechanics series offered in most university-level engineering programs.

This book’s content should prepare you for subsequent classes covering Engineering Mechanics: Dynamics and Mechanics of Materials. At its core, Engineering Statics provides the tools to solve static equilibrium problems for rigid bodies. The additional topics of resolving internal loads in rigid bodies and computing area moments of inertia are also included as stepping stones for later courses. We have endeavored to write in an approachable style and provide many questions, examples, and interactives for you to engage with and learn from.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
Daniel W. Baker
William Haynes
Date Added:
06/21/2022
Engineering Statics: Open and Interactive
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A free and open source textbook for a traditional, one-semester, engineering mechanics (statics) course.
Topics include forces and moments; equilibrium of particles, rigid bodies, and structures; centroids and moments of inertia. The text contains interactive diagrams illustrating important concepts. A pdf version is at https://engineeringstatics.org/pdf/statics.pdf

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
Dan Baker
William Haynes
Date Added:
08/17/2021
Engineering Systems Analysis for Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Engineering systems design must have the flexibility to take advantage of new opportunities while avoiding disasters. This subject develops “real options” analysis to create design flexibility and measure its value so that it can be incorporated into system optimization. It builds on essential concepts of system models, decision analysis, and financial concepts. Emphasis is placed on calculating value of real options with special attention given to efficient analysis and practical applications. The material is organized and presented to deal with the contextual reality of technological systems, that substantially distinguishes the analysis of real options in engineering systems from that of financial options.
Note
This MIT OpenCourseWare site is based on the materials from Professor de Neufville’s ESD.71 Web site. Additional materials, updated as needed by Professor de Neufville, can be found there.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
de Neufville, Richard
Date Added:
09/01/2008
Engineering Systems Dynamics Modelling, Simulation, and Design
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lagrangian and Bond Graph Methods

Short Description:
This open education resource presents effective system modelling methods, including Lagrangian and bond graph, and the application of a relevant engineering software tool, 20-sim. The content is designed for engineering students and professionals in the field to support their understanding and application of these methods for modelling, simulation, and design of engineering systems. The text also includes videos showing selected worked-out examples.

Long Description:
This textbook emphasizes the fundamentals of modelling methods—including Lagrangian and bond graph—and introduces a software tool for modelling and simulation to support the design of common engineering systems. This approach minimizes the time-consuming effort of manipulating and extracting system equations and writing computer code for integrating and finding their solution. We believe that our approach helps both students and professionals currently working in the field to become more productive engineers. Videos of selected worked-out examples help the reader understand the topic and applications for real-world engineering systems. This book comprises of 11 chapters.

Word Count: 41611

ISBN: 978-1-990132-09-4

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Textbook
Provider:
British Columbia Institute of Technology (BCIT)
Date Added:
10/27/2021
Engineering Tools - Egg Obstacle Course
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Successfully, transport the egg though the obstacle course in the shortest amount of time using only the materials given without touching or dropping the egg. Groups will modify the materials to create tools to aid in this process.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Date Added:
03/11/2019
Engineering Your Own Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Engineering a Mountain Rescue Litter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chelsea Heveran
Date Added:
10/14/2015
Engineering a Safer World
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

A new approach to safety, based on systems thinking, that is more effective, less costly, and easier to use than current techniques. Engineering has experienced a technological revolution, but the basic engineering techniques applied in safety and reliability engineering, created in a simpler, analog world, have changed very little over the years. In this groundbreaking book, Nancy Leveson proposes a new approach to safety—more suited to today's complex, sociotechnical, software-intensive world—based on modern systems thinking and systems theory. Revisiting and updating ideas pioneered by 1950s aerospace engineers in their System Safety concept, and testing her new model extensively on real-world examples, Leveson has created a new approach to safety that is more effective, less expensive, and easier to use than current techniques. Arguing that traditional models of causality are inadequate, Leveson presents a new, extended model of causation (Systems-Theoretic Accident Model and Processes, or STAMP), then shows how the new model can be used to create techniques for system safety engineering, including accident analysis, hazard analysis, system design, safety in operations, and management of safety-critical systems. She applies the new techniques to real-world events including the friendly-fire loss of a U.S. Blackhawk helicopter in the first Gulf War; the Vioxx recall; the U.S. Navy SUBSAFE program; and the bacterial contamination of a public water supply in a Canadian town. Leveson's approach is relevant even beyond safety engineering, offering techniques for “reengineering” any large sociotechnical system to improve safety and manage risk.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Reading
Provider:
MIT
Provider Set:
MIT Press
Author:
Nancy G. Leveson
Date Added:
01/01/2012
Engineering and Empathy: Teaching the Engineering Design Process through Assistive Devices
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process (EDP) while learning about assistive devices and biomedical engineering. They first go through a design-build-test activity to learn the steps of the cyclical engineering design process. Then, during the three main activities (7 x 55 minutes each) student teams are given a fictional client statement and follow the EDP steps to design products an off-road wheelchair, a portable wheelchair ramp, and an automatic floor sweeper computer program. Students brainstorm ideas, identify suitable materials and demonstrate different methods of representing solutions to their design problems scale drawings or programming descriptions, and simple models or classroom prototypes.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Kristen Billiar
Terri Camesano
Date Added:
09/18/2014
Engineering and Information: Research Skills for Engineers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource includes seven independent modules that focus on essential skills for engineering including how to find, understand, evaluate, and document information sources that are commonly used by engineers such as journal articles, patents, standards/guidelines, books, and webpages.

The resource has been created as a series of self-learning modules to support all undergraduate engineering students, regardless of their level of study. Since each online module focuses on building different skills, they can be used in combination or individually.

The seven modules included in this OER include:
1. Evidence-based practice
2. Books
3. Web Information
4. Journal Articles
5. Patents
6. Standards
7. Citation

This project is made possible with funding by the Government of Ontario and through eCampusOntario’s support of the Virtual Learning Strategy. To learn more about the Virtual Learning Strategy visit: https://vls.ecampusontario.ca

Subject:
Applied Science
Engineering
Material Type:
Lesson
Module
Provider:
eCampusOntario
Author:
Alanna Carter
Eva Mueller
Katie Harding
Shelir Ebrahimi
Date Added:
04/27/2022
Engineering and Technology for the Better Good of Society
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Engineering and Technology for the Better Good of Society PIT-OER is intended to train engineering technology students to leverage the power of select technologies aligned to the public interest applications and targeted public works institutions.This PIT-OER consists of four modules:Module 1: Project Management Methods with Applications to Public Works.Module 2: Technology and Ethics: “Are You Conflicted?”. Module 3: 3D Printing Applied to Everyday Public Interest and to Public Work Institutions.Module 4: How “Open” is Open Source Content: The Do’s and Don’t of Using Open Source Software, OSS. Each module is organized with lecture, assessment, and laboratory experiments. The modules are course materials for TECH-100, Introduction to Engineering and Technology, of Queensborough Community College.

Subject:
Architecture and Design
Computer Science
Educational Technology
Electronic Technology
Engineering
Information Science
Public Relations
Visual Arts
Material Type:
Activity/Lab
Assessment
Case Study
Homework/Assignment
Lecture
Lecture Notes
Module
Teaching/Learning Strategy
Author:
Huixin Wu
Raymond Lam
Dimitrios Stroumbakis
Date Added:
08/13/2020
Engineering and Technology in Society - Canada
Unrestricted Use
Public Domain
Rating
0.0 stars

This book is a compilation of open source resources to be used in an Engineering in Society course. Jennifer Kirkey started this work in the summer of 2018. She teaches physics and astronomy at Douglas College in New Westminster, British Columbia, and works closely with the engineering program there.

Subject:
Applied Science
Engineering
Social Science
Sociology
Material Type:
Textbook
Provider:
British Columbia/Yukon Open Authoring Platform
Author:
Jennifer Kirkey
Date Added:
01/24/2021
Engineering and the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015