In this quick optics activity, learners use a dim point of light …
In this quick optics activity, learners use a dim point of light (a disassembled Mini MagLite and dowel set-up) to cast a shadow of the blood supply in their retina onto the retina itself. This allows learners to see the blood supply of their retina and even their blind spot. Learners are encouraged to wear eye protection.
Crash Course AP Science: Today Hank explains the skeletal system and why …
Crash Course AP Science: Today Hank explains the skeletal system and why astronauts Scott Kelly and Mikhail Kornienko are out in space studying it. He talks about the anatomy of the skeletal system, including the flat, short, and irregular bones, and their individual arrangements of compact and spongy bone. He'll also cover the microanatomy of bones, particularly the osteons and their inner lamella. And finally he will introduce the process of bone remodeling, which is carried out by crews of osteocytes, osteoblasts, and osteoclasts.
Towards finding a solution to the unit's Grand Challenge Question about using …
Towards finding a solution to the unit's Grand Challenge Question about using nanoparticles to detect, treat and protect against skin cancer, students continue the research phase in order to answer the next research questions: What is the structure and function of skin? How does UV radiation affect the chemical reactions that go on within the skin? After seeing an ultraviolet-sensitive bead change color and learning how they work, students learn about skin anatomy and the effects of ultraviolet radiation on human skin, pollution's damaging effect on the ozone layer that can lead to increases in skin cancer, the UV index, types of skin cancer, ABCDEs of mole and lesion evaluation, and the sun protection factor (SPF) rating system for sunscreens. This prepares students to conduct the associated activity, in which they design quality-control experiments to test SPF substances.
Students review what they know about the 20 major bones in the …
Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.
Why do humans have two ears? How do the properties of sound …
Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.
Students follow the steps of the engineering design process to create their …
Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds. They learn to recognize different pitches, and see how engineers must test designs and materials to achieve the best amplifying properties.
This lesson introduces students to the space environment. It covers the major …
This lesson introduces students to the space environment. It covers the major differences between the environment on Earth and that of outer space and the engineering challenges that arise because of these discrepancies. In order to prepare students for the upcoming lessons on the human body, this lesson challenges them to think about how their bodies would change and adapt in the unique environment of space.
Students learn about the strength of bones and methods of helping to …
Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.
In this activity, learners use a chemical reaction to visualize where moisture …
In this activity, learners use a chemical reaction to visualize where moisture forms on the body. Learners use the Minor's iodine-starch test, a diagnostic test that doctors use to detect hyperhidrosis (excessive sweating), to identify where moisture is forming. Learners also use this method to test the effectiveness of different antiperspirants.
With the challenge to program computers to mimic the human reaction after …
With the challenge to program computers to mimic the human reaction after touching a hot object, students program LEGO® robots to "react" and move back quickly once their touch sensors bump into something. By relating human senses to electronic sensors used in robots, students see the similarities between the human brain and its engineering counterpart, the computer, and come to better understand the functioning of sensors in both applications. They apply an understanding of the human "stimulus-sensor-coordinator-effector-response" framework to logically understand human and robot actions.
Students learn about glaucoma its causes, how it affects individuals and how …
Students learn about glaucoma its causes, how it affects individuals and how biomedical engineers can identify factors that trigger or cause this eye disease, specifically the increase of pressure in the eye. Students also learn how RFID technologies transfer energy through waves and how engineers apply their scientific understanding of waves, energy and sensors to develop devices that measure the pressure in the eyes of people with glaucoma. Students conclude by sketching their own designs for a pressure-measuring eye device, preparing them to conduct the associated activity in which they revise, prototype and evaluate their device designs made tangible with a 3D printer.
Students reflect on their experiences making silly putty (the previous hands-on activity …
Students reflect on their experiences making silly putty (the previous hands-on activity in the unit), especially why changing the borax concentration alters the mechanical properties of silly putty and how this pertains to tissue mechanics. Students learn why engineers must understand tissue mechanics in order to design devices that will be implanted or used inside bodies, to study pathologies of tissues and how this alters tissue function, and to design prosthetics. Finally, students learn about collagen, elastin and proteoglycans and their roles in giving body tissues their unique functions. This prepares them for the culminating design-build-test activity of the unit.
Students learn about homeostasis and create models by constructing simple feedback systems …
Students learn about homeostasis and create models by constructing simple feedback systems using Arduino boards, temperature sensors, LEDs and Arduino code. Starting with pre-written code, students instruct LEDs to activate in response to the sensor detecting a certain temperature range. They determine appropriate temperature ranges and alter the code accordingly. When the temperature range is exceeded, a fan is engaged in order to achieve a cooling effect. In this way, the principle of homeostasis is demonstrated. To conclude, students write summary paragraphs relating their models to biological homeostasis.
Students learn how viruses invade host cells and hijack the hosts' cell-reproduction …
Students learn how viruses invade host cells and hijack the hosts' cell-reproduction mechanisms in order to make new viruses, which can in turn attack additional host cells. Students also learn how the immune system responds to a viral invasion, eventually defeating the viruses -- if all goes well. Finally, they consider the special case of HIV, in which the virus' host cell is a key component of the immune system itself, severely crippling it and ultimately leading to AIDS. The associated activity, Tracking a Virus, sets the stage for this lesson with a dramatic simulation that allows students to see for themselves how quickly a virus can spread through a population, and then challenges students to determine who the initial bearers of the virus were.
Poster encouraging early check-ups and treatment for cancer, showing outline of human …
Poster encouraging early check-ups and treatment for cancer, showing outline of human figure with heart and circulatory system. Date stamped on verso: Sep 2 1938. Caption continues with a list of six specific warning signs that should prompt a medical check-up. U.S. Public Health Service in cooperation with the American Society for the Control of Cancer.
After students have complete the associated activity to collect and graph acceleration …
After students have complete the associated activity to collect and graph acceleration data from walking human subjects, they learn more about gait analysis---the study of human motion, which is used as biometric data for human medical diagnostics and (non-human) comparative biomechanics. They learn about the steps that comprise the universal process of engineering analysisâdata collection, data analysis, mathematical modeling and reportingâand consider how these steps could be applied to analyze a person's gait, which prepares them to conduct the second associated activity.
Students discuss several human reproductive technologies available today pregnancy ultrasound, amniocentesis, in-vitro …
Students discuss several human reproductive technologies available today pregnancy ultrasound, amniocentesis, in-vitro fertilization and labor anesthetics. They learn how each technology works, and that these are ways engineers have worked to improve the health of expecting mothers and babies.
Students are presented with the unit's grand challenge problem: You are the …
Students are presented with the unit's grand challenge problem: You are the lead engineer for a biomaterials company that has a cardiovascular systems client who wants you to develop a model that can be used to test the properties of heart valves without using real specimens. How might you go about accomplishing this task? What information do you need to create an accurate model? How could your materials be tested? Students brainstorm as a class, then learn some basic information relevant to the problem (by reading the transcript of an interview with a biomedical engineer), and then learn more specific information on how heart tissues work their structure and composition (lecture information presented by the teacher). This prepares them for the associated activity, during which students cement their understanding of the heart and its function by dissecting sheep hearts to explore heart anatomy.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.