This issue of the free online magazine, Beyond Penguins and Polar Bears, …
This issue of the free online magazine, Beyond Penguins and Polar Bears, explores the tundra and how it can illustrate ecological concepts, relationships, and changes.
This nonfiction article, written for students in grades 4-5, explores the relationships …
This nonfiction article, written for students in grades 4-5, explores the relationships between various tundra species: marsh marigolds, bot flies, and caribou. Modified versions are available for students in younger grades.
This article assembles free resources from the Tundra: Life in the Polar …
This article assembles free resources from the Tundra: Life in the Polar Extremes issue of the Beyond Penguins and Polar Bears cyberzine into a unit outline based on the 5E learning cycle framework. Outlines are provided for Grades K-2 and 3-5.
Turbulent flows, with emphasis on engineering methods. Governing equations for momentum, energy, …
Turbulent flows, with emphasis on engineering methods. Governing equations for momentum, energy, and species transfer. Turbulence: its production, dissipation, and scaling laws. Reynolds averaged equations for momentum, energy, and species transfer. Simple closure approaches for free and bounded turbulent shear flows. Applications to jets, pipe and channel flows, boundary layers, buoyant plumes and thermals, and Taylor dispersion, etc., including heat and species transport as well as flow fields. Introduction to more complex closure schemes, including the k-epsilon, and statistical methods in turbulence.
This article describes robots that are helping scientists explore the Gakkel Ridge …
This article describes robots that are helping scientists explore the Gakkel Ridge deep below the Arctic Ocean and links to informational text about them. Versions are available for students in grades K-1, 2-3 and 4-5. Related science and literacy activities are included.
Robots today move far too conservatively, using control systems that attempt to …
Robots today move far too conservatively, using control systems that attempt to maintain full control authority at all times. Humans and animals move much more aggressively by routinely executing motions which involve a loss of instantaneous control authority. Controlling nonlinear systems without complete control authority requires methods that can reason about and exploit the natural dynamics of our machines. This course introduces nonlinear dynamics and control of underactuated mechanical systems, with an emphasis on computational methods. Topics include the nonlinear dynamics of robotic manipulators, applied optimal and robust control and motion planning. Discussions include examples from biology and applications to legged locomotion, compliant manipulation, underwater robots, and flying machines.
This series of questions before instruction, in-class peer instruction as students come …
This series of questions before instruction, in-class peer instruction as students come to understanding, and visualization of an important mathematical relationship allow students to iterate and improve their understanding of work incrementally.
This course presents fundamental principles and methods of materials and structures for …
This course presents fundamental principles and methods of materials and structures for aerospace engineering, and engineering analysis and design concepts applied to aerospace systems. The topics include statics; analysis of trusses; analysis of statically determinate and indeterminate systems; stress-strain behavior of materials; analysis of beam bending, buckling, and torsion; and material and structural failure, including plasticity, fracture, fatigue, and their physical causes. Experiential lab and aerospace system projects provide additional aerospace context.
This unit initiates a discussion about the importance of recognizing faults in …
This unit initiates a discussion about the importance of recognizing faults in relation to modern societal infrastructure. Students consider the types of infrastructure necessary to support a modern lifestyle, especially for people living in population centers. Students also explore how key infrastructure such as aqueducts, power lines, or oil/gas pipelines, which traverse large distances, may also be susceptible to damage by earthquakes well away from the population centers. Additionally, earthquakes can occur in regions where none have occurred in recorded history. The ability to recognize and evaluate the potential for damage to key infrastructure that are near or cross a fault can be used, in turn, to classify and ultimately predict the most and least likely locations for damage, and to make suggestions for minimizing future impacts.
Show more about Online Teaching suggestions Hide Online-ready: The exercise is electronic and could be done individually or in small online groups (using the Google Earth rather than printable files). Lecture can be done in synchronous or asynchronous online format, although synchronous would allow better discussions of societal impacts of earthquakes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 1 introduces the Water Sustainability in Cities Module. The content establishes …
Unit 1 introduces the Water Sustainability in Cities Module. The content establishes the foundation definitions of sustainability, sustainable development, and water sustainability in cities. Key sustainability concepts are introduced and examples provided for water in cities. Students are engaged in activities to help them explore the definitions of water sustainability in cities and apply systems thinking. The unit materials are designed with flexibility in mind such that instructors can adapt the module to their own courses and context. The unit may also be used on its own to provide an introductory water sustainability lesson without using other units in the module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit offers an alternative application for high-resolution topographic data from an …
This unit offers an alternative application for high-resolution topographic data from an outcrop. Using engineering geology methods and data collection from TLS and/or SfM, students design safe "road cuts" with low probability of failure for a proposed fictitious roadway along the side of a hill. Cut slopes or "road cuts" are constructed slopes along roadways in mountainous regions. The design of such slopes requires a safe slope angle, rockfall catchment ditch, and drainage provision. The decision of the slope angle is based on kinematic analysis for slope failures due to the orientation of discontinuities (bedding planes, joints, etc.) with respect to that of the proposed slope. Traditionally, discontinuity orientation data are collected from measurements directly on the outcrop. This can be dangerous and the accessible sites may not be fully representative of the cut as a whole. Remote methods such as TLS and SfM generate 3D models from which discontinuity data can be collected safely. In this unit students learn the workflow for designing safe cut slopes using discontinuity data collected from direct field observations and TLS or SfM and compare the methods and results.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 2 engages students in topics related to the water cycle, both …
Unit 2 engages students in topics related to the water cycle, both from natural and urban system perspectives. Students are assigned approximately 30 minutes of reading (short article) and are required to watch a 15-minute video before class to gain a basic understanding of the natural and urban water cycles, their components, and the impact of urbanization on runoff. Through short lectures, discussion questions, solution to example problems, and a group activity, students gain comprehension of the water cycle components, their spatial and temporal variability, water budget calculation, and the impacts of urbanization on surface water.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how …
Unit 3 addresses concepts related to urban-atmosphere interactions. The content explores how urban landscapes and atmospheric constituents modify or interact with the atmosphere to affect temperature, clouds, rainfall, and other parts of the water cycle. Fundamental concepts of weather and climate are established. The unit then transitions to focus on the "urbanized" environment and its complex interactions with the atmosphere. Students will learn about interactions such as 1) urban modification of surface temperature and energy exchanges; 2) water cycle components; 3) cloud-rainfall evolution within urban environments; and 4) applications to real societal challenges like urban flooding. The unit integrates basic meteorological/climatological analyses, geospatial thinking, and integration of scientific concepts within a real world context.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological …
Students are introduced to evapotranspiration (ET) and how ET varies with meteorological factors and plant factors. A pre-class video and worksheet introduce students to estimating landscape water needs from ET and precipitation data. In class, students design low water-use landscaping and calculate the water savings of water-efficient landscaping compared with turf grass.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 addresses the concept of Net Zero Water of buildings. Net …
Unit 5 addresses the concept of Net Zero Water of buildings. Net Zero Water can be defined in different ways. For this module it means a building's water needs are supplied 100% from harvested rainwater or water that is recycled on site. Reducing indoor and outdoor water use is a key element. Reading and videos are assigned to aid students grasping the concept of Net Zero Water as applied to buildings. A spreadsheet tool from the U.S. Green Building Council is introduced and used to estimate indoor water demand for baseline and design (water conservation) scenarios. In addition, this unit links to Unit 4 by including an estimate for outdoor water demand. The central activity for the unit is an active learning team exercise to analyze indoor water use reduction for a case study building and evaluate Net Zero Water.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are introduced to the concept of geoengineering, "the deliberate large-scale intervention …
Students are introduced to the concept of geoengineering, "the deliberate large-scale intervention in the Earth's climate system, in order to moderate global warming" (The Royal Society). The goal is for them to leverage their acquired knowledge from previous units in physical oceanography, ocean chemistry, biodiversity, and ecosystem ecology to evaluate the validity and/or the risk of geoengineering (systems thinking). Current and future generations will be required to make informed decisions on whether they support strategies that result in irreversible changes in Earth's carbon cycle.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 6 covers the preliminary design of a rainwater harvesting unit. Pre-class …
Unit 6 covers the preliminary design of a rainwater harvesting unit. Pre-class assignments provide background on rainwater harvesting. An active learning exercise steps student teams through the process of sizing a rainwater harvesting cistern, using water demand estimates from Units 4 and 5. The activity leads into a revision of the water system mind map developed in previous units.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.