This nonfiction article, written for elementary students, discusses the unique characteristics of …
This nonfiction article, written for elementary students, discusses the unique characteristics of the North and South poles. The student article is available as a text-only document, illustrated book, and electronic book. Related lesson plans are included for teacher use.
This resource presents a collection of essays developed from the author’s experience …
This resource presents a collection of essays developed from the author’s experience teaching the course Fluid Dynamics of the Atmosphere and Ocean, offered to graduate students entering the MIT/WHOI Joint Program in Oceanography. The collection includes the following three essays: Essay 1: Lagrangian and Eulerian Representations of Fluid Flow (revised and expanded in 2024)
Part 1: Kinematics and the Equations of Motion Part 2: Advection of Parcels and Fields
Essay 2: Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis Essay 3: A Coriolis Tutorial (revised and expanded in 2023)
Part 1: The Coriolis Force, Inertial and Geostrophic Motion Part 2: A Rotating Shallow Water Model and Geostrophic Adjustment Part 3: Beta Effects and Western Propagation Part 4: Wind-Driven Ocean Circulation and the Sverdrup Relation Part 5: On the Seasonally-Varying Circulation of the Arabian Sea
The goal of this resource is to help each student master the concepts and mathematical tools that make up the foundation of classical and geophysical fluid dynamics. These essays treat these topics in considerably greater depth than a comprehensive fluids textbook can afford, and they are accompanied by data files (MATLAB® and Fortran) to allow some application and experimentation. They should be suitable for self-study.
The goal of this course is to prepare you to engage in …
The goal of this course is to prepare you to engage in experimental investigations of questions related to linguistic theory, focusing on phonetics and phonology.
We will discuss numerous research problems that are related to the internet. …
We will discuss numerous research problems that are related to the internet. Sample topics include: routing algorithms such as BGP, communication protocols such as TCP, algorithms for intelligently selecting a resource in the face of uncertainty, bandwidth sensing tools, load balancing algorithms, streaming protocols, determining the structure of the internet, cost optimization, DNS-related problems, visualization, and large-scale data processing. The seminar is intended for students who are ready to work on challenging research problems. Each lecture will discuss:
methods used today issues and problems formulation of concrete problems potential new lines of research
A modest amount of background information will be provided so that the importance and context of the problems can be understood. No previous study of the internet is required, but experience with algorithms and/or theoretical computer science at the graduate/research level is needed.
In this course, we will present the theory of Probabilistically Checkable Proofs …
In this course, we will present the theory of Probabilistically Checkable Proofs (PCPs), and prove some fundamental consequences of it as well as more recent advances. More specifically, the first half of the course will be devoted to the (algebraic) proof of the basic PCP Theorem and basic relation to approximation problems. We will then move on to more advanced topics, such as hardness amplification, the long-code framework, the Unique-Games Conjecture and its implications, and the 2-to-2 Games Theorem.
Maps are designed to allow people to travel to a new location …
Maps are designed to allow people to travel to a new location without a guide to show the way. They tell us information about areas to which we may or may not have ever been. There are many types of maps available for both recreational and professional use. A navigator uses a nautical map, while an engineer might use a surveyor's map. Maps are created by cartographers, and they can be very specific or very general, depending on their intended use. The focus of this lesson is on how to read and use topographical maps. Students will also learn to identify the common features of a map. Through the associated activities, students will learn how to use a compass to find bearing to an object on a map and in the classroom.
This unit consists of five lessons encouraging younger learners to engineer increasingly …
This unit consists of five lessons encouraging younger learners to engineer increasingly better towers using blocks and recycled materials. Each 30 minute lesson ("phase") includes goals, discussion, activity instructions, extensions, and student worksheets.
Phase 1: Paper Cut-Outs Activity Phase 2: Building Blocks Activity Phase 3: Number of Blocks Activity Phase 4: Building within a Space Activity Phase 5: Recycled Tower Activity
Toy Product Design is an introduction to the product design process with …
Toy Product Design is an introduction to the product design process with a focus on designing for play and entertainment. It is a project-centric class offered in the Spring semester. Students work in small teams of 5–6 members to design and prototype new toys. Students will be introduced to various design topics, including: brainstorming; estimation; sketching; graphic design; drawing and marker rendering; sketch modeling; concept development; design aesthetics; prototyping; and written, visual, and oral communication.
Students learn about traffic lights and their importance in maintaining public safety …
Students learn about traffic lights and their importance in maintaining public safety and order. Using a Parallax® Basic Stamp 2 microcontroller, students work in teams on the engineering challenge to build a traffic light with a specific behavior. In the process, they learn about light-emitting diodes (LEDs), and how their use can save energy. Students also design their own requirements based on real-world observations as they learn about traffic safety and work towards an interesting goal within the realm of what is important in practice. Knowledge gained from the activity is directly transferrable to future activities, and skills learned are scalable to more ambitious class projects.
This animation produced by WGBH and Digizyme, Inc. demonstrates the experimental technique …
This animation produced by WGBH and Digizyme, Inc. demonstrates the experimental technique used to introduce DNA plasmids inside bacterial cells, a process called bacterial transformation.
In this video segment adapted from NASA, learn how engineers are transforming …
In this video segment adapted from NASA, learn how engineers are transforming the future of flight by designing airplanes based on principles found in nature. In the early 1900s, the Wright Brothers found inspiration for their first airplane in nature. Their "Flyer," which was modeled on a bird's flexible wing design, was steered and stabilized by pulleys and cables that twisted the wingtips. Despite its success, this control strategy quickly vanished from aviation. Instead, stiff wings capable of withstanding the greater forces associated with increased aircraft weights and flying speeds became the standard. In this video segment adapted from NASA, learn how designs found in nature have inspired today's aerospace engineers as they conceive the next-generation of flying machines. Grades 3-12.
Transistors are the building blocks of modern electronic devices. Your cell phones, …
Transistors are the building blocks of modern electronic devices. Your cell phones, iPods, and computers all depend on them to operate. Thanks to today's microfabrication technology, transistors can be made very tiny and be massively produced. You are probably using billions of them while working with this activity now--as of 2006, a dual-core Intel microprocessor contains 1.7 billion transistors. The field effect transistor is the most common type of transistor. So we will focus on it in this activity.
This lesson applies the science and math of the rotation of a …
This lesson applies the science and math of the rotation of a sphere to water and wind movements on Earth. Students are introduced to convection, the Trade Winds and the Coriolis Force. Using an online visualizer, students generate trajectories and then analyze course patterns and latitudinal changes in strength. Note that this is lesson two of five on the Ocean Motion website. Each lesson investigates ocean surface circulation using satellite and model data and can be done independently. See Related URL's for links to the Ocean Motion Website that provide science background information, data resources, teacher material, student guides and a lesson matrix.
In this video segment adapted from ZOOM, the cast tries to design …
In this video segment adapted from ZOOM, the cast tries to design and build a bridge made out of drinking straws that will support the weight of 200 pennies.
Students learn about the fundamental strength of different shapes, illustrating why structural …
Students learn about the fundamental strength of different shapes, illustrating why structural engineers continue to use the triangle as the structural shape of choice. Examples from everyday life are introduced to show how this shape is consistently used for structural strength. Along with its associated activity, this lesson empowers students to explore the strength of trusses made with different triangular elements to evaluate the various structural properties.
Students investigate the relationships between angles and side lengths in right triangles …
Students investigate the relationships between angles and side lengths in right triangles with the help of materials found in the classroom and a mobile device. Using all or part of a meter stick or dowel and text books or other supplies, students build right triangles and measure the angles using a clinometer application on an Android® (phone or tablet) or iOS® device (iPhone® or iPad®). Then they are challenged to create a triangle with a given side length and one angle. The electronic device is used to measure the accuracy of their constructions.
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution …
Students learn about tsunami vertical evacuation structures (TVES) as a viable solution for communities with high ground too far away for rapid evacuation. Students then apply basic design principles for TVES and make their own scale model that they think would fit will in their target community. Activity has great scope for both technical and creative design as well as practical application of math skills. Examples are from the Pacific Northwest, USA's most tsunami-vulnerable communities away from high ground, but it could be adapted to any region with similar vulnerability.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Bonnie Magura (Portland Public Schools), Roger Groom (Mt Tabor Middle School), and CEETEP (Cascadia EarthScope Earthquake and Tsunami Education Program)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.