Students use everyday building materials sand, pea gravel, cement and water to …
Students use everyday building materials sand, pea gravel, cement and water to create and test pervious pavement. They learn what materials make up a traditional, impervious concrete mix and how pervious pavement mixes differ. Groups are challenged to create their own pervious pavement mixes, experimenting with material ratios to evaluate how infiltration rates change with different mix combinations.
Students will identify water sources in the school environment in order to …
Students will identify water sources in the school environment in order to understand the origins of our water and to gain perspective about the students' place in the water cycle. Students will learn about the water cycle using a variety of resources and discover connections between the water cycle and the water that they use every day.
In a class demonstration, students observe a simple water cycle model to …
In a class demonstration, students observe a simple water cycle model to better understand its role in pollutant transport. This activity shows one way in which pollution is affected by the water cycle; it simulates a point source of pollution in a lake and the resulting environmental consequences.
In this video segment adapted from Haskell Indian Nations University, student filmmakers …
In this video segment adapted from Haskell Indian Nations University, student filmmakers explain why it is important to them to make a video about climate change.
Students apply their understanding of the natural water cycle and the urban …
Students apply their understanding of the natural water cycle and the urban "stormwater" water cycle, as well as the processes involved in both cycles to hypothesize how the flow of water is affected by altering precipitation. Student groups consider different precipitation scenarios based on both intensity and duration. Once hypotheses and specific experimental steps are developed, students use both a natural water cycle model and an urban water cycle model to test their hypotheses. To conclude, students explain their results, tapping their knowledge of both cycles and the importance of using models to predict water flow in civil and environmental engineering designs. The natural water cycle model is made in advance by the teacher, using simple supplies; a minor adjustment to the model easily turns it into the urban water cycle model.
Through an overview of the components of the hydrologic cycle and the …
Through an overview of the components of the hydrologic cycle and the important roles they play in the design of engineered systems, students' awareness of the world's limited fresh water resources is heightened. The hydrologic cycle affects everyone and is the single most critical component to life on Earth. Students examine in detail the water cycle components and phase transitions, and then learn how water moves through the human-made urban environment. This urban "stormwater" water cycle is influenced by the pervasive existence of impervious surfaces that limit the amount of infiltration, resulting in high levels of stormwater runoff, limited groundwater replenishment and reduced groundwater flow. Students show their understanding of the process by writing a description of the path of a water droplet through the urban water cycle, from the droplet's point of view. The lesson lays the groundwork for rest of the unit, so students can begin to think about what they might do to modify the urban "stormwater" water cycle so that it functions more like the natural water cycle. A PowerPoint® presentation and handout are provided.
In this video segment adapted from Navajo Technical College, meet two members …
In this video segment adapted from Navajo Technical College, meet two members of the Navajo Nation, one Elder and one scientist, as they share their observations about how precipitation has changed since they were children.
In this video segment adapted from NOVA scienceNOW, MIT engineer Dava Newman …
In this video segment adapted from NOVA scienceNOW, MIT engineer Dava Newman is working to replace today's bulky, inflated space suits with a radical, sleek design that may one day allow astronauts to walk easily on Mars.
This activity develops students' understanding of climate by having them make in-depth …
This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.
On this site, through a variety of activities, you can learn about …
On this site, through a variety of activities, you can learn about anthropology, archaeology, astronomy, biodiversity, the brain, climate change, the Earth, Einstein, expeditions, genetics, marine biology, paleontology, water, and zoology.
Learn how snowfall happening later in the year than usual is impacting …
Learn how snowfall happening later in the year than usual is impacting cultural practices in this video segment about climate change adapted from the College of Menominee Nation.
In this video segment adapted from the College of Menominee Nation, tribal …
In this video segment adapted from the College of Menominee Nation, tribal members observe lower water levels in lakes and streams and call for global, collaborative solutions to address climate change.
Students learn about the techniques engineers have developed for changing ocean water …
Students learn about the techniques engineers have developed for changing ocean water into drinking water, including thermal and membrane desalination. They begin by reviewing the components of the natural water cycle. They see how filters, evaporation and/or condensation can be components of engineering desalination processes. They learn how processes can be viewed as systems, with unique objects, inputs, components and outputs, and sketch their own system diagrams to describe their own desalination plant designs.
This video segment adapted from NOVA follows the clean-up effort after the …
This video segment adapted from NOVA follows the clean-up effort after the 1989 Exxon Valdez oil spill off the coast of Alaska. Also featured is a marsh where an oil spill occurred 20 years earlier; analysis suggests that environmental damage may last for decades.
Looking at models and maps, students explore different pathways and consequences of …
Looking at models and maps, students explore different pathways and consequences of pollutant transport via the weather and water cycles. In an associated literacy activity, students develop skills of observation, recording and reporting as they follow the weather forecast and produce their own weather report for the class.
For students that have already been introduced to the water cycle this …
For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.
Students are introduced to the fabulous planet on which they live. Even …
Students are introduced to the fabulous planet on which they live. Even though we spend our entire lives on Earth, we still do not always understand how it fits into the rest of the solar system. Students learn about the Earth's position in the solar system and what makes it unique. They learn how engineers study human interactions with the Earth and design technologies and systems to monitor, use and care for our planet's resources wisely to preserve life on Earth.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.