How does our sense of taste work, and why did it evolve? …
How does our sense of taste work, and why did it evolve? What are taste buds, and how do they register the five basic sensations of sweet, salty, bitter, sour, and umami (a Japanese word describing something "meaty")? In this audio interactive, Danielle Reed of the Monell Chemical Senses Center offers a primer on what happens on your tongue, and in your brain, as you eat.
This lesson describes the function and components of the human nervous system. …
This lesson describes the function and components of the human nervous system. It helps students understand the purpose of our brain, spinal cord, nerves and the five senses. How the nervous system is affected during spaceflight is also discussed in this lesson.
This learning strategy provides discussion and visualizations of the neuron and its …
This learning strategy provides discussion and visualizations of the neuron and its function, as well as components and functions of different parts of the nervous system, including the human brain.
Through this unit, students act as engineers who are given the challenge …
Through this unit, students act as engineers who are given the challenge to design laparoscopic surgical tools. After learning about human anatomy and physiology of the abdominopelvic cavity, especially as it applies to laparoscopic surgery, students learn about the mechanics of elastic solids, which is the most basic level of material behavior. Then, they explore the world of fluids and learn how fluids react to forces. Next, they combine their understanding of the mechanics of solids and fluids to understand viscoelastic materials, such as those found in the human body. Finally, they learn about tissue mechanics, including how collagen, elastin and proteoglycans give body tissues their unique characteristics. In the culminating hands-on activity, student teams design their own prototypes of laparoscopic surgical robots remotely controlled, camera-toting devices that must fit through small incisions, inspect organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. They use a (homemade) synthetic abdominal cavity simulator to test and iterate the prototype devices.
Students learn about the human body's system components, specifically its sensory systems, …
Students learn about the human body's system components, specifically its sensory systems, nervous system and brain, while comparing them to robot system components, such as sensors and computers. The unit's life sciences-to-engineering comparison is accomplished through three lessons and five activities. The important framework of "stimulus-sensor-coordinator-effector-response" is introduced to show how it improves our understanding the cause-effect relationships of both systems. This framework reinforces the theme of the human body as a system from the perspective of an engineer. This unit is the second of a series, intended to follow the Humans Are Like Robots unit.
Vision is the primary sense of many animals and much is known …
Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.
In a class demonstration, the teacher places different pill types ("chalk" pill, …
In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.
Students are introduced to prosthetics history, purpose and benefits, main components, main …
Students are introduced to prosthetics history, purpose and benefits, main components, main types, materials, control methods, modern examples including modern materials used to make replacement body parts and the engineering design considerations to develop prostheses. They learn how engineers and medical doctors work together to improve the lives of people with amputations and the challenges faced when designing new prostheses with functional and cosmetic criteria and constraints. A PowerPoint(TM) presentation and two worksheets are provided.
To gain a better understanding of the roles and functions of components …
To gain a better understanding of the roles and functions of components of the human respiratory system and our need for clean air, students construct model lungs that include a diaphragm and chest cavity. They see how air moving in and out of the lungs coincides with diaphragm movement. Then student teams design and build a prototype face mask pollution filter. They use their model lungs to evaluate their prototypes to design requirements.
Student teams investigate biomedical engineering and the technology of prosthetics. Students create …
Student teams investigate biomedical engineering and the technology of prosthetics. Students create a model prosthetic lower leg using various materials. Each team demonstrate its prosthesis' strength and consider its pros and cons, giving insight into the characteristics and materials biomedical engineers consider in designing artificial limbs.
Students reinforce their knowledge of the different parts of the digestive system …
Students reinforce their knowledge of the different parts of the digestive system and explore the concept of simulation by developing a pill coating that can withstand the churning actions and acidic environment found in the stomach. Teams test the coating durability by using a clear soda to simulate stomach acid.
Students design and build prototypes for protective eyewear. They choose different activities …
Students design and build prototypes for protective eyewear. They choose different activities or sports that require protective eyewear and design a device for that particular use. Students learn about the many ways in which the eyes can be damaged and how engineers incorporate different features and materials into eyewear designs to best protect the eyes.
Students observe and test their reflexes, including the (involuntary) pupillary response and …
Students observe and test their reflexes, including the (involuntary) pupillary response and (voluntary) reaction times using their dominant and non-dominant hands, as a way to further explore how reflexes occur in humans. They gain insights into how our bodies react to stimuli, and how some reactions and body movements are controlled automatically, without conscious thought. Using information from the associated lesson about how robots react to situations, including the stimulus-to-response framework, students see how engineers use human reflexes as examples for controls for robots.
Short quiz on CCSS.RI.9-10.4. The text is from Brendan Buhler's essay, "The …
Short quiz on CCSS.RI.9-10.4. The text is from Brendan Buhler's essay, "The Teeming Metropolis of You". The Dale-Chall text-difficulty level is 11-12, the Flesch-Kincaid level is 9.9.
Students learn about human reflexes, how our bodies react to stimuli and …
Students learn about human reflexes, how our bodies react to stimuli and how some body reactions and movements are controlled automatically, without thinking consciously about the movement or responses. In the associated activity, students explore how reflexes work in the human body by observing an involuntary human reflex and testing their own reaction times using dominant and non-dominant hands. Once students understand the stimulus-to-response framework components as a way to describe human reflexes and reactions in certain situations, they connect this knowledge to how robots can be programmed to conduct similar reactions.
Students learn about how biomedical engineers aid doctors in repairing severely broken …
Students learn about how biomedical engineers aid doctors in repairing severely broken bones. They learn about using pins, plates, rods and screws to repair fractures. They do this by designing, creating and testing their own prototype devices to repair broken turkey bones.
The purpose, components, and functions of the respiratory system are presented in …
The purpose, components, and functions of the respiratory system are presented in this learning through disussion and visualizations. Participants learn about the nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, and alveoli.
Students continue to build a rigorous background in human sensors and their …
Students continue to build a rigorous background in human sensors and their engineering equivalents by learning about electronic touch, light, sound and ultrasonic sensors that measure physical quantities somewhat like eyes, ears and skin. Specifically, they learn about microphones as one example of sound sensors, how sounds differ (intensity, pitch) and the components of sound waves (wavelength, period, frequency, amplitude). Using microphones connected to computers running (free) Audacity® software, student teams experiment with machine-generated sounds and their own voices and observe the resulting sound waves on the screen, helping them to understand that sounds are waves. Students take pre/post quizzes, complete a worksheet and watch two short online videos about "seeing" sound.
In this activity, learners explore how different deodorants work. Learners treat agar …
In this activity, learners explore how different deodorants work. Learners treat agar plates with different types of deodorants and compare the bacteria growth on the plates to the control sample.
Students use their knowledge about how healthy heart valves function to design, …
Students use their knowledge about how healthy heart valves function to design, construct and implant prototype replacement mitral valves for hypothetical patients' hearts. Building on what they learned in the associated lesson about artificial heart valves, combined with the testing and scoring of their prototype heart valve designs in this activity, students discover the pros and cons of different types of artificial heart valves based on materials, surgery requirements, and lifespan.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.