Updating search results...

Search Resources

188 Results

View
Selected filters:
  • gravity
Land on the Run
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about landslides, discovering that there are different types of landslides that occur at different speeds from very slow to very quick. All landslides are the result of gravity, friction and the materials involved. Both natural and human-made factors contribute to landslides. Students learn what makes landslides dangerous and what engineers are doing to prevent and avoid landslides.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Tim Nicklas
Date Added:
09/18/2014
Launching a Satellite
Read the Fine Print
Rating
0.0 stars

Isaac Newton's famous thought experiment about what would happen if you launched a cannon from a mountaintop at a high velocity comes to life with an interactive computer model. You are charged with the task of launching a satellite into space. Control the angle and speed at which the satellite is launched, and see the results to gain a basic understanding of escape velocity.

Subject:
Applied Science
Education
Mathematics
Physical Science
Physics
Space Science
Technology
Material Type:
Activity/Lab
Data Set
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Learning to Think about Gravity II: Aristotle to Einstein
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to Newtonian to Einsteinian understanding of gravity.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Esther Zirbel
Date Added:
11/06/2014
Learning to Think about Gravity: Newtons's Theory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to the Newtonian understanding of gravity.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Esther Zirbel
Date Added:
11/06/2014
Lending a Hand: Teaching Forces through Assistive Device Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how biomedical engineers create assistive devices for persons with fine motor skill disabilities. They learn about types of forces, balanced and unbalanced forces, and the relationship between form and function, as well as the structure of the hand. They do this by designing, building and testing their own hand "gripper" prototypes that are able to grasp and lift a 200 ml cup of sand.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kelly Cox
Kristen Billiar
Terri Camesano
Date Added:
10/14/2015
Life on the Moon
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about the physical properties of the Moon. They compare these to the properties of the Earth to determine how life would be different for astronauts living on the Moon. Using their understanding of these differences, they are asked to think about what types of products engineers would need to design for us to live comfortably on the Moon.

Subject:
Applied Science
Engineering
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
Lithospheric Density
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students learn about the weighted mean by building spreadsheets that apply this concept to the average density of the oceanic lithosphere.

Subject:
Applied Science
Geology
Geoscience
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Tom Juster
Date Added:
11/06/2014
Lithospheric Density
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students learn about the weighted mean by building spreadsheets that apply this concept to the average density of the oceanic lithosphere.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Career and Technical Education
Environmental Studies
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Technology
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Thomas Juster
Date Added:
12/03/2020
Locks and Dams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the structure, function and purpose of locks and dams, which involves an introduction to Pascal's law, water pressure and gravity.

Subject:
Applied Science
Career and Technical Education
Engineering
Hydrology
Logistics and Transportation
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Jeff Lyng
Kristin Field
Lauren Cooper
Date Added:
09/18/2014
Lunar Lander
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
01/26/2007
Lunar Lander (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
06/02/2010
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
The Mortenson Family Foundation
Wendy Adams
Date Added:
04/26/2006
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Mass vs. Weight: Introduction
Read the Fine Print
Educational Use
Rating
0.0 stars

Two astronauts aboard the International Space Station (ISS) describe mass and weight and the differences between the two in this video from NASA’s Teaching From Space initiative.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
NASA
WGBH Educational Foundation
WNET
Date Added:
10/27/2011
Measuring Reaction Time
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a physics lab where students test their reaction time by using the acceleration due to gravity. The use of Excel is introduced in this lab to analyze data.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
12/09/2011
Measuring g
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the LEGO MINDSTORMS(TM) NXT kit, students construct experiments to measure the time it takes a free falling body to travel a specified distance. Students use the touch sensor, rotational sensor, and the NXT brick to measure the time of flight for the falling object at different release heights. After the object is released from its holder and travels a specified distance, a touch sensor is triggered and time of object's descent from release to impact at touch sensor is recorded and displayed on the screen of the NXT. Students calculate the average velocity of the falling object from each point of release, and construct a graph of average velocity versus time. They also create a best fit line for the graph using spreadsheet software. Students use the slope of the best fit line to determine their experimental g value and compare this to the standard value of g.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer Haghpanah
Keeshan Williams
Nicole Abaid
Date Added:
09/18/2014
Measuring the vertical gradient of gravity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The free-air effect tells us that as elevation above sea level increases, gravitational acceleration g decreases at the rate of about 0.3086 mgal/meter. This effect is routinely corrected for when making gravity surveys. We will use the LaCoste & Romberg gravimeter to measure the free-air effect in a tall building on campus, and compare with the theoretical value.

keywords: gravity; vertical gradient; gravimeter

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Rob Sternberg
Date Added:
09/01/2019
Meet the Universe's Main Attraction ... Gravity
Read the Fine Print
Rating
0.0 stars

This fun Web site is part of OLogy, where kids can collect virtual trading cards and create projects with them. Here, they are introduced to gravity and the scope of its influence. The site has three sections:What Does Gravity Do?, an illustrated look at how gravity affects everything in the universe. What Would Happen if the Force of Gravity Were Turned Off?, a thought experiment that asks students to imagine a world without gravity's influence. A Closer Look at Mars, an introduction to Earth's closest neighbor, which has less gravity.

Subject:
Astronomy
Physical Science
Material Type:
Reading
Provider:
American Museum of Natural History
Provider Set:
American Museum of Natural History
Date Added:
02/16/2011