Updating search results...

Search Resources

227 Results

View
Selected filters:
  • electricity
How the price of lighting decreased 12,000-fold in the United Kingdom
Unrestricted Use
CC BY
Rating
0.0 stars

The transition from traditional lighting methods to modern illumination in the United Kingdom has had significant social, economic, and environmental consequences. Historically, lighting services relied on candles made from animal fat, but the 19th century saw the introduction of new fuels such as town gas, kerosene, and eventually electricity.

Subject:
Applied Science
Career and Technical Education
Economics
Environmental Studies
Social Science
Material Type:
Case Study
Diagram/Illustration
Reading
Provider:
Boston University
Provider Set:
Boston University Institute for Global Sustainability
Date Added:
07/03/2023
Humans Are Like Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

Four lessons related to robots and people present students with life sciences concepts related to the human body (including brain, nervous systems and muscles), introduced through engineering devices and subjects (including computers, actuators, electricity and sensors), via hands-on LEGO® robot activities. Students learn what a robot is and how it works, and then the similarities and differences between humans and robots. For instance, in lesson 3 and its activity, the human parts involved in moving and walking are compared with the corresponding robot components so students see various engineering concepts at work in the functioning of the human body. This helps them to see the human body as a system, that is, from the perspective of an engineer. Students learn how movement results from 1) decision making, such as deciding to walk and move, and 2) implementation by conveying decisions to muscles (human) or motors (robot).

Subject:
Applied Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
Ice, Ice, PV!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Jack Baum Abby Watrous
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Introduction to Circuits and Ohm's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the basics of DC circuits, analyzing the light from light bulbs when connected in series and parallel circuits. Ohm's law and the equation for power dissipated by a circuit are the two primary equations used to explore circuits connected in series and parallel. Students measure and see the effect of power dissipation from the light bulbs. Kirchhoff's voltage law is used to show how two resistor elements add in series, while Kirchhoff's current law is used to explain how two resistor elements add when in parallel. Students also learn how electrical engineers apply this knowledge to solve problems. Power dissipation is particularly important with the introduction of LED bulbs and claims of energy efficiency, and understanding how power dissipation is calculated helps when evaluating these types of claims. This activity is designed to introduce students to the concepts needed to understand how circuits can be reduced algebraically.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Erik Wemlinger
Date Added:
09/18/2014
Introduction to Electricity, Magnetism, and Circuits
Unrestricted Use
CC BY
Rating
0.0 stars

Short Description:
This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigour inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Word Count: 197484

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Saskatchewan
Author:
Daryl Janzen
Date Added:
11/28/2018
Introduction to Electricity, Magnetism, and Circuits
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigour inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
eCampusOntario
Author:
Daryl Janzen
Date Added:
06/08/2019
Introduction to Electricity by Creating a Light Up Quiz Board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a guided demonstration where students create light up quiz boards to demonstrate electricity vocabulary.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Sarah Morinville
Date Added:
12/13/2011
Introduction to Electronics, Signals, and Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course is designed to provide a practical - hands on - introduction to electronics with a focus on measurement and signals. The prerequisites are courses in differential equations, as well as electricity and magnetism. No prior experience with electronics is necessary. The course will integrate demonstrations and laboratory examples with lectures on the foundations. Throughout the course we will use modern “virtual instruments” as test-beds for understanding electronics. The aim of the course is to provide students with the practical knowledge necessary to work in a modern science or engineering setting.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chaniotakis, Manos
Cory, David
Hutchinson, Ian
Date Added:
02/01/2006
Inverse Square Law
Read the Fine Print
Educational Use
Rating
0.0 stars

This animation from KET's distance learning physics course demonstrates the mathematical formula for a scientific law as it applies to light.

Subject:
Algebra
Chemistry
Functions
Mathematics
Physical Science
Physics
Material Type:
Interactive
Reading
Provider:
PBS LearningMedia
Provider Set:
Teachers' Domain
Author:
KET
The William and Flora Hewlett Foundation
Date Added:
08/25/2008
Investigating Circuits: Building and Comparing Current Intensities of Series, Parallel, and Complex Circuits
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a indoor lab where students investigate the current differences in different circuits where students build a small house and construct different types of circuits.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Stephanie Marsh
Date Added:
12/13/2011
Investigating Electricity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a group lab activity where students explore beginning electrical circuits.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Jodi Warner
Date Added:
12/13/2011
Investigating Motors and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an activity where students build a motor, learn motor operation and theory, interpret their understanding through troubleshooting, and develop a new, experimental question related to the motor. One follow-up activity would be coupling their motor to a fan blade or other axle to convert electrical energy to magnetic energy into mechanical motion for real world application.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
David Reierson
Date Added:
12/13/2011
Is It Shocking?
Read the Fine Print
Educational Use
Rating
0.0 stars

To better understand electricity, students investigate the properties of materials based on their ability to dispel static electricity. They complete a lab worksheet, collect experimental data, and draw conclusions based on their observations and understanding of electricity. The activity provides hands-on learning experience to safely explore the concept of static electricity, learning what static electricity is and which materials best hold static charge. Students learn to identify materials that hold static charge as insulators and materials that dispel charge as conductors. The class applies the results from their material tests to real-world engineering by identifying the best of the given materials for moving current in a solar panel.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Palermo
Cristian Heredia
Lauren Jabusch
Date Added:
10/14/2015
John Travoltage
Unrestricted Use
CC BY
Rating
0.0 stars

Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks up charges from the carpet. Bring his hand close to the door knob and get rid of the excess charge.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Wendy Adams
Date Added:
06/01/2004
Learning the science behind electricity.
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an interactive powerpoint lecture on the science of electricity followed by a laboratory investigation where students dissect a disposable camera.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Andrea Dammann
Date Added:
12/09/2011
Let the Sun Shine!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the sun can be used for energy. They learn about passive solar heating, lighting and cooking, and active solar engineering technologies (such as photovoltaic arrays and concentrating mirrors) that generate electricity. Students investigate the thermal energy storage capacities of test materials. They learn about radiation and convection as they build a model solar water heater and determine how much it can heat water in a given amount of time. In another activity, students build and compare the performance of four solar cooker designs. In an associated literacy activity, students investigate how people live "off the grid" using solar power.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Light Your Way
Read the Fine Print
Educational Use
Rating
0.0 stars

During a power failure, or when we go outside at night, we grab a flashlight so we can find our way. What happens inside a flashlight that makes the bulb light up? Why do we need a switch to turn on a flashlight? Have you ever noticed that for the flashlight to work you must orient the batteries a certain way as you insert them into the casing? Many people do not know that a flashlight is a simple series circuit. In this hands-on activity, students build this everyday household item and design their own operating series circuit flashlights.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Lighting the Way: Electrical Circuits and Lamp Wiring
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This self-paced unit for students in grades 6-9 provides an opportunity to explore basic electrical circuits and demonstrate the new knowledge by wiring a lamp, explaining the components of the lamp that are important for the flow of electricity, and completing a schematic of the lamp circuitry.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Nichole A. Kotasek
Date Added:
08/10/2012
Lights On!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to circuits through a teacher demonstration using a set of Christmas lights. Then students groups build simple circuits using batteries, wires and light bulbs. They examine how electricity is conducted through a light bulb using a battery as a power source. Students also observe the differences between series and parallel circuits by building each type.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Lin
Date Added:
10/14/2015