Updating search results...

Search Resources

197 Results

View
Selected filters:
  • dna
Genetics 101 (Part 4of 5): What are Phenotypes?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video collaboration from Khan Academy and 23andMe, you'll learn how your observable traits, or phenotypes, are the result of interactions between your genes and environment.

Subject:
Genetics
Life Science
Material Type:
Lecture
Provider:
23andMe
Provider Set:
Genetics 101
Date Added:
11/14/2014
Genetics 101 (Part 5 of 5): Why No Y?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video collaboration from Khan Academy and 23andMe, you'll find out why women don't have a Y chromosome. Even with no Y, women can still learn about their paternal ancestry with genetic testing from services like 23andMe.

Subject:
Genetics
Life Science
Material Type:
Lecture
Provider:
23andMe
Provider Set:
Genetics 101
Date Added:
10/15/2014
The Geniverse Lab Demo
Read the Fine Print
Rating
0.0 stars

The Geniverse software is being developed as part of a five-year research project funded by the National Science Foundation. Still in its early stages, a Beta version of the software is currently being piloted in six schools throughout New England. We invite you to try the current Beta version, keeping in mind that you may encounter errors or pages that are not fully functional. If you encounter any problem, it may help to refresh or reload the web page.

Subject:
Genetics
Life Science
Material Type:
Activity/Lab
Data Set
Game
Interactive
Student Guide
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Good Taste:  Honey Bee Forager Preference
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this 5 lesson set, students learn about the foraging behavior of bees and hypothesize if the bee’s behavior is related to its ability to detect sugar. Students will then determine which type of foraging bee would be best for pollination or honey production. Students will learn about the process of gel electrophoresis as a genetic tool and analyze DNA to identify strains of bees who are better pollen-collecting bees or better nectar-collecting bees.

Subject:
Biology
Ecology
Genetics
Life Science
Material Type:
Activity/Lab
Case Study
Date Added:
07/25/2019
Honey bee genetics shape the bee gut microbiota at the strain level
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The honey bee gut microbiome has a critical influence on bee health and is transmitted among members of a colony through social interactions. The bee microbiome is made up of a core set of bacterial groups that show high diversity among individuals at the strain level. While this variation has been shown to be clearly associated with numerous environmental factors, bee genetics may also play an important role. Researchers recently used DNA sequencing techniques to better understand how bee genetics affect gut microbiome structure. The team examined the genomes of four subspecies of lab-reared honey bees with those of their associated microbiomes. They noted that the abundance of most core gut microbiota members was influenced by host subspecies and also found a clear link between a Bifidobacterium strain in the gut and brain neurotransmitter and gene expression patterns..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
03/01/2022
How DNA Binding Proteins Recognize Their Target Sequences in DNA
Unrestricted Use
CC BY
Rating
0.0 stars

Instructional video on how DNA binding proteins recognize their target sequences in DNA.

Although textbooks describe this process and show illustrations, it is difficult to grasp without seeing a live demonstration.

Created for Biology 41 General Genetics at Tufts University.

Subject:
Biology
Genetics
Life Science
Material Type:
Simulation
Author:
Ekaterina V. Mirkin
Date Added:
06/02/2021
How DNA Replicates
Read the Fine Print
Educational Use
Rating
0.0 stars

This narrated animation from Interactive NOVA: "The Secret of Life" illustrates DNA replication.

Subject:
Life Science
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
09/26/2003
Human Biology - Genetics (Student's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Genetics Student Edition book is one of ten volumes making up the Human Biology curriculum, an interdisciplinary and inquiry-based approach to the study of life science.

Subject:
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Program in Human Biology, Stanford University
Date Added:
02/04/2011
Human Biology - Lives of Cells (Student's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Lives of Cells Student Edition book is one of ten volumes making up the Human Biology curriculum, an interdisciplinary and inquiry-based approach to the study of life science.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Program in Human Biology, Stanford University
Date Added:
02/04/2011
Identifying the genetic determinants of postoperative pain
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Going in for surgery? It’s possible the level of pain you’ll experience during recovery is encoded in your DNA. This conclusion draws from the work of an international collaboration of researchers. By looking at the outcomes of over 1000 patients, they pinpointed factors linked to ongoing postsurgical pain. They found that one important determinant is the code of a single gene – the brain-derived neurotrophic factor, or BDNF, gene – opening new avenues for how we understand, and treat, chronic pain. Nearly all surgical patients experience some degree of postoperative pain, but it’s usually resolved as they heal. For many, however, it can last for months or even years – a condition referred to as chronic postsurgical pain. Although some elements that lead to this condition are known – nerve injury during surgery, for example, is one common cause – there’s often no easily identifiable culprit. Enter genetics..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/23/2019
Imaging DNA Structure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzymes. The lesson begins with a discussion to motivate the need for imaging techniques and DNA analysis, which prepares students to participate in the associated two-part activity: 1) students each choose an imaging method to research (from a provided list of molecular imaging methods), 2) they research basic information about electrophoresis.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Inside the DNA
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Interdisciplinary Integrated Unit on Dna and Genetics Part A: Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Part of an interdisciplinary week-long unit on DNA and genetics with activities in science, math, and language arts. This lesson is Part A: Science. Students complete a teacher-made scavenger hunt as an introduction to DNA and genetics, then watch a short video and use their science books to learn more about the topic. Students work in pairs to investigate DNA, genetics, and cloning through internet research and compile their information in the form of their own internet scavenger hunt.

Subject:
Biology
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
University of North Carolina at Chapel Hill School of Education
Provider Set:
LEARN NC Lesson Plans
Author:
Jane Lentz
Jimmy White
Marlene Smith
Tori Goldrick
Date Added:
10/12/2006
Introduction to Biological Engineering Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen.
This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew’s materials are used in this Spring 2009 version, and are included with his permission.
This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Endy, Andrew
Kuldell, Natalie
Date Added:
02/01/2009
Introduction to Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.
Acknowledgments
The study materials, problem sets, and quiz materials used during Fall 2004 for 7.012 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course #7.012. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chess, Andrew
Gardel, Claudette
Lander, Eric
Weinberg, Robert
Date Added:
09/01/2004
Introduction to Biotechnology in Agriculture
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this introduction to biotechnology's use in agriculture, learners will discuss history of the topic, model the fermentation process, and extract DNA in a lab activity.

Subject:
Agriculture
Career and Technical Education
Material Type:
Activity/Lab
Lesson Plan
Author:
Owl Nest Manager
Date Added:
03/24/2022