This Library Carpentry lesson introduces archivists to working with data. At the …
This Library Carpentry lesson introduces archivists to working with data. At the conclusion of the lesson you will: be able to explain terms, phrases, and concepts in code or software development; identify and use best practice in data structures; use regular expressions in searches.
Original data has become more accessible thanks to cultural and technological advances. …
Original data has become more accessible thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories, local and national governments, and non-governmental organisations. Often, these data may be presented in novel ways, by creating new tables or plots, or by integrating additional data. Free, open-source software has become a great companion for open data. This open scholarship project offers free workshops and coding meet-ups (hackathons) to learn and practise data presentation, across the UK. It is made possible by a fellowship of the Software Sustainability Institute.
When you combine the sheer scale and range of digital information now …
When you combine the sheer scale and range of digital information now available with a journalist’s "nose for news" and her ability to tell a compelling story, a new world of possibility opens up. With The Data Journalism Handbook, you’ll explore the potential, limits, and applied uses of this new and fascinating field.
This valuable handbook has attracted scores of contributors since the European Journalism Centre and the Open Knowledge Foundation launched the project at MozFest 2011. Through a collection of tips and techniques from leading journalists, professors, software developers, and data analysts, you’ll learn how data can be either the source of data journalism or a tool with which the story is told—or both.
Data management planning is the starting point in the data life cycle. …
Data management planning is the starting point in the data life cycle. Creating a formal document that outlines what you will do with the data during and after the completion of research helps to ensure that the data is safe for current and future use. This lesson describes the benefits of a data management plan (DMP), outlines the components of a DMP, details tools for creating a DMP, provides NSF DMP information, and demonstrates the use of an example DMP.
The ESIP Federation, in cooperation with NOAA and the Data Conservancy, seeks …
The ESIP Federation, in cooperation with NOAA and the Data Conservancy, seeks to share the community's knowledge with scientists who increasingly need to be better data managers, as well as to support workforce development for new data management professionals. Over the next several years, the ESIP Federation expects to evolve training courses which seeks to improve the understanding of scientific data management among scientists, emerging scientists, and data professionals of all sorts.
All courses are available under a Creative Commons Attribution 3.0 license that allows you to share and adapt the work as long as you cite the work according to the citation provided. Please send feedback upon the courses to shortcourseeditors@esipfed.org.
The Data Management Skillbuilding Hub is a repository for open educational resources …
The Data Management Skillbuilding Hub is a repository for open educational resources regarding data management, meaning that it is a collection of learning resources freely contributed by anyone willing to share them. Materials such as lessons, best practices, and videos, are stored in the DataONEorg GitHub repository as well as searchable through the Data Management Training Clearinghouse. We invite you submit your own educational resources so that the Data Management Skillbuilding Hub can remain an up-to-date and sustainable educational tool for all to benefit from. You can easily contribute learning materials to the Skillbuilding Hub via GitHub online.
Databases are useful for both storing and using data effectively. Using a …
Databases are useful for both storing and using data effectively. Using a relational database serves several purposes. It keeps your data separate from your analysis. This means there’s no risk of accidentally changing data when you analyze it. If we get new data we can rerun a query to find all the data that meets certain criteria. It’s fast, even for large amounts of data. It improves quality control of data entry (type constraints and use of forms in Access, Filemaker, etc.) The concepts of relational database querying are core to understanding how to do similar things using programming languages such as R or Python. This lesson will teach you what relational databases are, how you can load data into them and how you can query databases to extract just the information that you need.
This is an alpha lesson to teach Data Management with SQL for …
This is an alpha lesson to teach Data Management with SQL for Social Scientists, We welcome and criticism, or error; and will take your feedback into account to improve both the presentation and the content. Databases are useful for both storing and using data effectively. Using a relational database serves several purposes. It keeps your data separate from your analysis. This means there’s no risk of accidentally changing data when you analyze it. If we get new data we can rerun a query to find all the data that meets certain criteria. It’s fast, even for large amounts of data. It improves quality control of data entry (type constraints and use of forms in Access, Filemaker, etc.) The concepts of relational database querying are core to understanding how to do similar things using programming languages such as R or Python. This lesson will teach you what relational databases are, how you can load data into them and how you can query databases to extract just the information that you need.
Good data organization is the foundation of any research project. Most researchers …
Good data organization is the foundation of any research project. Most researchers have data in spreadsheets, so it’s the place that many research projects start. We organize data in spreadsheets in the ways that we as humans want to work with the data, but computers require that data be organized in particular ways. In order to use tools that make computation more efficient, such as programming languages like R or Python, we need to structure our data the way that computers need the data. Since this is where most research projects start, this is where we want to start too! In this lesson, you will learn: Good data entry practices - formatting data tables in spreadsheets How to avoid common formatting mistakes Approaches for handling dates in spreadsheets Basic quality control and data manipulation in spreadsheets Exporting data from spreadsheets In this lesson, however, you will not learn about data analysis with spreadsheets. Much of your time as a researcher will be spent in the initial ‘data wrangling’ stage, where you need to organize the data to perform a proper analysis later. It’s not the most fun, but it is necessary. In this lesson you will learn how to think about data organization and some practices for more effective data wrangling. With this approach you can better format current data and plan new data collection so less data wrangling is needed.
Lesson on spreadsheets for social scientists. Good data organization is the foundation …
Lesson on spreadsheets for social scientists. Good data organization is the foundation of any research project. Most researchers have data in spreadsheets, so it’s the place that many research projects start. Typically we organize data in spreadsheets in ways that we as humans want to work with the data. However computers require data to be organized in particular ways. In order to use tools that make computation more efficient, such as programming languages like R or Python, we need to structure our data the way that computers need the data. Since this is where most research projects start, this is where we want to start too! In this lesson, you will learn: Good data entry practices - formatting data tables in spreadsheets How to avoid common formatting mistakes Approaches for handling dates in spreadsheets Basic quality control and data manipulation in spreadsheets Exporting data from spreadsheets In this lesson, however, you will not learn about data analysis with spreadsheets. Much of your time as a researcher will be spent in the initial ‘data wrangling’ stage, where you need to organize the data to perform a proper analysis later. It’s not the most fun, but it is necessary. In this lesson you will learn how to think about data organization and some practices for more effective data wrangling. With this approach you can better format current data and plan new data collection so less data wrangling is needed.
Quality assurance and quality control are phrases used to describe activities that …
Quality assurance and quality control are phrases used to describe activities that prevent errors from entering or staying in a data set. These activities ensure the quality of the data before it is collected, entered, or analyzed, as well as actively monitoring and maintaining the quality of data throughout the study. In this lesson, we define and provide examples of quality assurance, quality control, data contamination and types of errors that may be found in data sets. After completing this lesson, participants will be able to describe best practices in quality assurance and quality control and relate them to different phases of data collection and entry.
When first sharing research data, researchers often raise questions about the value, …
When first sharing research data, researchers often raise questions about the value, benefits, and mechanisms for sharing. Many stakeholders and interested parties, such as funding agencies, communities, other researchers, or members of the public may be interested in research, results and related data. This lesson addresses data sharing in the context of the data life cycle, the value of sharing data, concerns about sharing data, and methods and best practices for sharing data.
Some research funders have a mandate for data resulting from their funded …
Some research funders have a mandate for data resulting from their funded research to be shared. This presentation provides a general definition of data sharing and how scholars can identify and follow data sharing mandates.
Background Scientific research in the 21st century is more data intensive and …
Background Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers – data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound data management principles.
Assignments, notes, and exam questions for CS 315: Data Structures and Algorithms. …
Assignments, notes, and exam questions for CS 315: Data Structures and Algorithms. Taught by Raphael Finkel, Department of Computer Science, University of Kentucky.
Data Tree is a free online course with all you need to …
Data Tree is a free online course with all you need to know for research data management, along with ways to engage and share data with business, policymakers, media and the wider public. The self-paced training course will take 15 to 20 hours to complete in eight structured modules. The course is packed with video, quizzes and real-life examples of data management, along with valuable tips from experts in data management, data sharing and science communication. The training course materials will be available for structured learning, but also to dip into for immediate problem solving.
Data Tree is funded by the Natural Environment Research Council (NERC) through the National Productivity Investment Fund (NPIF), delivered by the Institute for Environmental Analytics and Stats4SD and supported by the Institute of Physics.
Data Carpentry lesson to learn how to use command-line tools to perform …
Data Carpentry lesson to learn how to use command-line tools to perform quality control, align reads to a reference genome, and identify and visualize between-sample variation. A lot of genomics analysis is done using command-line tools for three reasons: 1) you will often be working with a large number of files, and working through the command-line rather than through a graphical user interface (GUI) allows you to automate repetitive tasks, 2) you will often need more compute power than is available on your personal computer, and connecting to and interacting with remote computers requires a command-line interface, and 3) you will often need to customize your analyses, and command-line tools often enable more customization than the corresponding GUI tools (if in fact a GUI tool even exists). In a previous lesson, you learned how to use the bash shell to interact with your computer through a command line interface. In this lesson, you will be applying this new knowledge to carry out a common genomics workflow - identifying variants among sequencing samples taken from multiple individuals within a population. We will be starting with a set of sequenced reads (.fastq files), performing some quality control steps, aligning those reads to a reference genome, and ending by identifying and visualizing variations among these samples. As you progress through this lesson, keep in mind that, even if you aren’t going to be doing this same workflow in your research, you will be learning some very important lessons about using command-line bioinformatic tools. What you learn here will enable you to use a variety of bioinformatic tools with confidence and greatly enhance your research efficiency and productivity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.