All resources in Wisconsin Digital Learning Collaborative CCSS Math Resources

Which Function?

(View Complete Item Description)

This task addresses knowledge related to interpreting forms of functions derived by factoring or completing the square. It requires students to pay special attention to the information provided by the way the equation is represented as well as the sign of the leading coefficient, which is not written out explicitly, and then to connect this information to the important features of the graph.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Your Father

(View Complete Item Description)

This is a simple task touching on two key points of functions. First, there is the idea that not all functions have real numbers as domain and range values. Second, the task addresses the issue of when a function admits an inverse, and the process of "restricting the domain" in order to achieve an invertible function.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Algae Blooms

(View Complete Item Description)

The problem statement describes a changing algae population as reported by the Maryland Department of Natural Resources. In part (a), students are expected to build an exponential function modeling algae concentration from the description given of the relationship between concentrations in cells/ml and days of rapid growth (F-LE.2).

Material Type: Activity/Lab

Author: Illustrative Mathematics

Population and Food Supply

(View Complete Item Description)

In this task students construct and compare linear and exponential functions and find where the two functions intersect. One purpose of this task is to demonstrate that exponential functions grow faster than linear functions even if the linear function has a higher initial value and even if we increase the slope of the line. This task could be used as an introduction to this idea.

Material Type: Activity/Lab

Author: Illustrative Mathematics

A Saturating Exponential

(View Complete Item Description)

The context of this task is a familiar one: a cold beverage warms once it is taken out of the refrigerator. Rather than giving the explicit function governing this warmth, a graph is presented along with the general form of the function. Students must then interpret the graph in order to understand more specific details regarding the function.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Linear Or Exponential?

(View Complete Item Description)

This task gives a variet of real-life contexts which could be modeled by a linear or exponential function. The key distinguishing feature between the two is whether the change by equal factors over equal intervals (exponential functions), or by a constant increase per unit interval (linear functions).

Material Type: Activity/Lab

Author: Illustrative Mathematics

Temperatures in Degrees Fahrenheit and Celsius

(View Complete Item Description)

Temperature conversions provide a rich source of linear functions which are encountered not only in science but also in our every day lives when we travel abroad. The first part of this task provides an opportunity to construct a linear function given two input-output pairs. The second part investigates the inverse of a linear function while the third part requires reasoning about quantities and/or solving a linear equation.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Carbon 14 Dating

(View Complete Item Description)

The task requires the student to use logarithms to solve an exponential equation in the realistic context of carbon dating, important in archaeology and geology, among other places. Students should be guided to recognize the use of the natural logarithm when the exponential function has the given base of e, as in this problem. Note that the purpose of this task is algebraic in nature -- closely related tasks exist which approach similar problems from numerical or graphical stances.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Carbon 14 Dating In Practice I

(View Complete Item Description)

In the task "Carbon 14 Dating'' the amount of Carbon 14 in a preserved plant is studied as time passes after the plant has died. In practice, however, scientists wish to determine when the plant died and, as this task shows, this is not possible with a simple measurement of the amount of Carbon 14 remaining in the preserved plant. The equation for the amount of Carbon 14 remaining in the preserved plant is in many ways simpler here, using 12 as a base.

Material Type: Activity/Lab

Author: Illustrative Mathematics