All resources in #VTOpen

‘Hunger Games’ Science: Investigating Genetically Engineered Organisms

(View Complete Item Description)

What lessons can we learn about genetically engineered organisms from the example of the jabberjay, a fictional bird in the movie “The Hunger Games”? In this lesson, students discuss the definition of genetically modified organisms, learn about the risks and benefits of research on G.M.O.’s, explore the growing do-it-yourself biology movement, and develop proposals seeking to either restrict or permit research into genetically modifying the avian flu virus.

Material Type: Activity/Lab, Assessment, Case Study, Homework/Assignment, Interactive, Lesson Plan, Reading, Simulation, Teaching/Learning Strategy, Unit of Study

Author: David Goodrich

Mutation Detective

(View Complete Item Description)

Mutation Detective is a text-based game using the platform Twine. In this game, students choose “cases” of genetic mutations. They are first given the original and mutated amino acid sequences, then can go further to the original and mutated RNA sequences. The goal is to guess what kind of mutation has occured and provide evidence for it. There are also checkpoints throughout for them to take notes in their science notebook.

Material Type: Activity/Lab, Game, Homework/Assignment, Interactive

Author: Alex Brenon

Earthquake 8.2

(View Complete Item Description)

An engineering and design lesson for middle school (our 7th grade standards). In the aftermath of a natural disaster, can you engineer a device that will keep medicine within a 40-60°F range using natural resources from the biome you live in, and/or debris created by the disaster for three days, until the Red Cross can arrive? You are a team of relief workers in __________________after a major earthquake/tsunami has occurred. Your team lead as just told you about a young women with diabetes has been injured and needs insulin to be delivered __________ miles away (no open roads). Your team will need to research, design, and build a portable device to keep the insulin between _____ and ______ °(F/C) for _____ days. Once you return you will present the effectiveness of your device to your lead and a team other relief workers showing your both your design/device and explaining the process.

Material Type: Activity/Lab

Authors: Bobbi Dano, Jen Bultler

MS-ETS-1-1 Proficiency Scale

(View Complete Item Description)

This is a task neutral proficiency scale for MS-ETS1-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with four middle school teachers. Note: Proficiency scales assume learning progression.

Material Type: Assessment

Author: Maggie Bly

Solar Energy (Middle School NGSS Unit)

(View Complete Item Description)

This unit explores the NGSS Middle School bundle for Engineering Design (MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4) by engaging students in a Project-Based engineering task where students develop and apply their understanding of solar energy to create a solar device which can generate electricity for people who have lost power due to a natural disaster.

Material Type: Activity/Lab

Author: Pranjali Upadhyay

Matter and Its Interactions Phenomenon Unit - Tanker Collapse

(View Complete Item Description)

This resource is a phenomenon-based adaption to the Smithsonian's STCMS Matter and Its Interactions kit. The anchoring phenomenon event features a railroad tanker that collapses due to the phase changes of water that was used to clean it. Students will investigate what causes phase changes, energy transfer, thermal energy, the law of conservation of mass, and atoms and molecules throughout the three week unit.

Material Type: Activity/Lab, Lesson Plan

Author: Carissa Haug

7.3 Metabolic Reactions

(View Complete Item Description)

Unit Summary This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why.  Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected. This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list. Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):

Material Type: Activity/Lab, Lesson, Module

8.2 Sound Waves

(View Complete Item Description)

Unit Summary In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music. They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level. This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS4-1, MS-PS4-2. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Material Type: Activity/Lab, Lesson, Module

6.2 Thermal Energy

(View Complete Item Description)

Unit Summary This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer compared to the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other.  Students investigate the different cup features they conjecture are important to explaining the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find that there are two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints. This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS1-4*, MS-PS3-3, MS-PS3-4, MS-PS3-5, MS-PS4-2*, MS-ETS1-4. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Material Type: Activity/Lab, Lesson, Module

Conceptual Chemistry

(View Complete Item Description)

Conceptual Chemistry is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each quarter begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the quarter, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each quarter, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.

Material Type: Full Course

Authors: Gary Thayer, Jonathan Frostad, Michael Crebbin, Malia Turner, Mackenzie Neal, Zachary Sawhill

Remix

OHPS Conceptual Chemistry- ADA/editable version

(View Complete Item Description)

Conceptual Chemistry is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each quarter begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the quarter, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each quarter, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.

Material Type: Full Course

Authors: Barbara Soots, Gary Thayer, Jonathan Frostad, Michael Crebbin, Malia Turner, Mackenzie Neal, Zachary Sawhill

5-ESS1-1 Proficiency Scale

(View Complete Item Description)

This is a task neutral proficiency scale for 5-ESS1-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with five elementary teachers.

Material Type: Assessment

Author: Maggie Bly

1-ESS1-1 Proficiency Scale

(View Complete Item Description)

This is a task neutral proficiency scale for 1-ESS1-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with five elementary teachers.

Material Type: Assessment

Author: Maggie Bly

3-PS2-1 Proficiency Scale

(View Complete Item Description)

This is a task neutral proficiency scale for 3-PS2-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with five elementary teachers. Note: Proficiency scales assume learning progression. A student that can independently plan and conduct an investigation could be building off a collaborative investigation by changing their variables.

Material Type: Assessment

Author: Maggie Bly