All resources in PA STEM Toolkit

Build an Aluminum Foil Boat

(View Complete Item Description)

When an object is placed in water, there are two primary forces acting on it. Buoyancy is the force exerted on an object that is wholly or partly immersed in a fluid. The force of gravity is a downward force and buoyancy is an upward force. The gravitational force is determined by the object's weight, and the buoyancy force is determined by the weight of the water that is displaced by the object. If an object weighs less than the amount of water it displaces, it floats; if it weighs more, it sinks.

Material Type: Activity/Lab

Authors: based on a commonly shared lesson idea., STEM Bites are a project of the Oregon STEM Hub network. Lesson submitted from GO-STEM

STEM Through Wind Turbines

(View Complete Item Description)

This unit integrates scientific inquiry, the engineering design process, with math practices and technology. Students learn about energy, alternative energy, designing experiments and use math and technology as tools to accomplish their tasks.

Material Type: Activity/Lab, Assessment

Author: JC HIDOE

STEM in PA: BrightNow!

(View Complete Item Description)

BrightNow! is a team of educators, musicians, artists, and innovators dedicated to creating tools for educators and families that support young learners. These supports are addressed and integrated into the lyrics, lessons, and activities in a way that enables a teacher to incorporate them into lessons and day-to-day activities, and are deliverable online or in-person. This resource includes mp3 audio file, downloadable song lyrics, and activity guides.

Material Type: Activity/Lab, Interactive

Author: Kelsi Wilcox Boyles

Five Moore Minutes by Shelley Moore

(View Complete Item Description)

Five Moore Minutes is a website with videos dedicated to empowering schools and classrooms to support ALL Learners! Created by Shelley Moore, this website is designed with teachers in mind. As educators, we don’t always have a lot of time, so this website and video series offers resources, research, professional development activities and inspiration in small chunks!

Material Type: Teaching/Learning Strategy

Author: Jill Neuhard

6.1 Light & Matter

(View Complete Item Description)

How does a one-way mirror work? Though most everyone knows that one-way mirrors exist, having students model how they work turns out to be a very effective way to develop their thinking about how visible light travels and how we see images. Initial student models reveal a wide variety of ideas and explanations that motivate the unit investigations that help students figure out what is going on and lead them to a deeper understanding of the world around them. As the first unit in the OpenSciEd program, during the course of this unit, students also develop the foundation for classroom norms for collaboration that will be important across the whole program.

Material Type: Lesson, Lesson Plan, Unit of Study

7.3 Metabolic Reactions

(View Complete Item Description)

Unit Summary This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why.  Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected. This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list. Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):

Material Type: Activity/Lab, Lesson, Module

6.2 Thermal Energy

(View Complete Item Description)

Unit Summary This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer compared to the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other.  Students investigate the different cup features they conjecture are important to explaining the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find that there are two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints. This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS1-4*, MS-PS3-3, MS-PS3-4, MS-PS3-5, MS-PS4-2*, MS-ETS1-4. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Material Type: Activity/Lab, Lesson, Module

8.2 Sound Waves

(View Complete Item Description)

Unit Summary In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music. They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level. This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS4-1, MS-PS4-2. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Material Type: Activity/Lab, Lesson, Module

Anchoring Phenomenon Routine for Kindergarten Weather

(View Complete Item Description)

The Anchoring Phenomenon Routine is the launch to student investigation around the anchoring phenomenon. This phenomenon will be the one that students will describe and explain, using disciplinary core ideas, science and engineering practices and crosscutting concepts in investigations. The Anchoring Phenomenon Routine will encourage thoughtful consideration of the phenomenon, initial models, connections to related phenomenon, discussions about the phenomenon and the creation of the KLEWS chart used for documenting student learning. In an Anchoring Phenomenon Routine, ​students​: ● ​Are presented with a phenomenon or design problem ● ​Write and discuss what they notice and wonder about from the initial presentation ● ​Create and compare initial models of the phenomenon or problem ● ​Identify related experiences and knowledge that they could draw upon to explain the phenomenon or solve the problem ● ​Construct a KLEWS Chart ● ​Identify potential investigations to answer the questions on the KLEWS Chart, adding the questions to the chart

Material Type: Activity/Lab, Homework/Assignment

Authors: Michigan Mathematics & Science Leadership, Michigan Science Teachers Association

Anchoring Phenomenon Routine for Grade 5 - Space Systems Systems, Stars and the Solar System

(View Complete Item Description)

The Anchoring Phenomenon Routine is the launch to student investigation around the anchoring phenomenon. This phenomenon will be the one that students will describe and explain, using disciplinary core ideas, science and engineering practices and crosscutting concepts in investigations. The Anchoring Phenomenon Routine will encourage thoughtful consideration of the phenomenon, initial models, connections to related phenomenon, discussions about the phenomenon and the creation of the KLEWS chart used for documenting student learning. In an Anchoring Phenomenon Routine, ​students​: ● ​Are presented with a phenomenon or design problem ● ​Write and discuss what they notice and wonder about from the initial presentation ● ​Create and compare initial models of the phenomenon or problem ● ​Identify related experiences and knowledge that they could draw upon to explain the phenomenon or solve the problem ● ​Construct a KLEWS Chart ● ​Identify potential investigations to answer the questions on the KLEWS Chart, adding the questions to the chart

Material Type: Activity/Lab, Homework/Assignment

Authors: Michigan Mathematics & Science Leadership Network, Michigan Science Teachers Association

Anchoring Phenomenon Routine for Grade 4 - Structure, Function, and Information Processing

(View Complete Item Description)

The Anchoring Phenomenon Routine is the launch to student investigation around the anchoring phenomenon. This phenomenon will be the one that students will describe and explain, using disciplinary core ideas, science and engineering practices and crosscutting concepts in investigations. The Anchoring Phenomenon Routine will encourage thoughtful consideration of the phenomenon, initial models, connections to related phenomenon, discussions about the phenomenon and the creation of the KLEWS chart used for documenting student learning. In an Anchoring Phenomenon Routine, ​students​: ● ​Are presented with a phenomenon or design problem ● ​Write and discuss what they notice and wonder about from the initial presentation ● ​Create and compare initial models of the phenomenon or problem ● ​Identify related experiences and knowledge that they could draw upon to explain the phenomenon or solve the problem ● ​Construct a KLEWS Chart ● ​Identify potential investigations to answer the questions on the KLEWS Chart, adding the questions to the chart

Material Type: Activity/Lab, Homework/Assignment

Authors: Michigan Mathematics & Science Leadership, Michigan Science Teachers Association

STEELS Foundation Boxes

(View Complete Item Description)

PDE Science Advisor David Bauman unpacks the Foundation Boxes and explains how they support Science, Technology & Engineering, and Environmental Literacy & Sustainability instruction and curriculum development.  This introduction can set the stage for educators to begin unpacking STEELS standards.

Material Type: Lecture

Author: Eric Lech