All resources in Oregon Mathematics

Snake on a Plane

(View Complete Item Description)

This task has students approach a function via both a recursive and an algebraic definition, in the context of a famous game of antiquity that they may have encountered in a more modern form. The content underlying the algebra is the sum of the first n natural numbers (also known as the nth triangular number.

Material Type: Activity/Lab

Medieval Archer

(View Complete Item Description)

This task addresses the first part of standard F-BF.3: ŇIdentify the effect on the graph of replacing f(x) by f(x)+k, kf(x), f(kx), and f(x+k) for specific values of k (both positive and negative).Ó Here, students are required to understand the effect of replacing x with x+k, but this task can also be modified to test or teach function-building skills involving f(x)+k, kf(x), and f(kx) in a similar manner.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Identifying Quadratic Functions (Standard Form)

(View Complete Item Description)

This task has students explore the relationship between the three parameters a, b, and c in the equation f(x)=ax2+bx+c and the resulting graph. There are many possible approaches to solving each part of this problem, especially the first part. We outline some of them here (which overlap heavily in places), applied to the top left graph, and then only give the final answers in the solution provided.

Material Type: Activity/Lab

Identifying Quadratic Functions (Vertex Form)

(View Complete Item Description)

This task has students explore the relationship between the three parameters a, h, and k in the equation f(x)=a(x−h)2+k and the resulting graph. There are many possible approaches to solving each part of this problem, especially the first part. We outline some of them here (which overlap heavily in places), applied to the top left graph, and then only give the final answers in the solution provided.

Material Type: Activity/Lab

F-LE Basketball Bounces, Assessment Variation 1

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: SCREEN I In science class, some students dropped a basketball and allowed it to bounce. They measured and recorded the highest point of each bounce. ht...

Material Type: Activity/Lab

Author: Illustrative Mathematics

F-LE Basketball Bounces, Assessment Variation 2

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: SCREEN I In science class, some students dropped a basketball and allowed it to bounce. They measured and recorded the highest point of each bounce. ht...

Material Type: Activity/Lab

Author: Illustrative Mathematics

F-LE Boiling Water

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a table showing the approximate boiling point of water at different elevations: Elevation (meters above sea level)Boiling Point (degrees Celsi...

Material Type: Activity/Lab

Author: Illustrative Mathematics

F-LE Choosing an appropriate growth model

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below are population estimates for the larger metropolitan areas of Paris (France), Shenzhen (China), and Lagos (Nigeria) for each decade between 1950 ...

Material Type: Activity/Lab

Author: Illustrative Mathematics

Linear Or Exponential?

(View Complete Item Description)

This task gives a variet of real-life contexts which could be modeled by a linear or exponential function. The key distinguishing feature between the two is whether the change by equal factors over equal intervals (exponential functions), or by a constant increase per unit interval (linear functions).

Material Type: Activity/Lab

Author: Illustrative Mathematics

Haircut Costs

(View Complete Item Description)

This problem could be used as an introductory lesson to introduce group comparisons and to engage students in a question they may find amusing and interesting. More generally, the idea of the lesson could be used as a template for a project where students develop a questionnaire, sample students at their school and report on their findings.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Speed Trap

(View Complete Item Description)

The purpose of this task is to allow students to demonstrate an ability to construct boxplots and to use boxplots as the basis for comparing distributions. The solution should directly compare the center, spread, and shape of the two distributions and comment on the high outlier in the northbound data set.

Material Type: Activity/Lab

Author: Illustrative Mathematics

7, 8, 9: Coffee and Crime

(View Complete Item Description)

This task addresses many standards regarding the description and analysis of bivariate quantitative data, including regression and correlation. Students should recognize that the pattern shown is one of a strong, positive, linear association, and thus a correlation coefficient value near +1 is plausible. Students should also be able to interpret the slope of the least-squares line as an estimated increase in y per unit change in x (and thus for a 3 unit increase in x, students should expect an estimated increase in y that equals 3 times the model's slope value).

Material Type: Activity/Lab

Author: Illustrative Mathematics