Mathematics

Precalculus: An Investigation of Functions

(View Complete Item Description)

Precalculus: An Investigation of Functions is a free, open textbook covering a two-quarter pre-calculus sequence including trigonometry. The first portion of the book is an investigation of functions, exploring the graphical behavior of, interpretation of, and solutions to problems involving linear, polynomial, rational, exponential, and logarithmic functions. An emphasis is placed on modeling and interpretation, as well as the important characteristics needed in calculus.

Material Type: Textbook

Authors: David Lippman, Melonie Rasmussen

Calculus for the Life Sciences: A Modeling Approach Volume 1

(View Complete Item Description)

Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course.

Material Type: Textbook

Authors: James L. Cornette, Ralph A. Ackerman

College Algebra

(View Complete Item Description)

College Algebra is an introductory text for a college algebra survey course. The material is presented at a level intended to prepare students for Calculus while also giving them relevant mathematical skills that can be used in other classes. The authors describe their approach as "Functions First," believing introducing functions first will help students understand new concepts more completely. Each section includes homework exercises, and the answers to most computational questions are included in the text (discussion questions are open-ended).

Material Type: Textbook

Authors: Carl Stitz, Jeff Zeager

Advanced Calculus

(View Complete Item Description)

Some of the topics that this book addresses are: Vector spaces; finite-dimensional vector spaces; differential calculus; compactness and completeness; scalar product space; differential equations; multilenear functionals; integration; differentiable manifolds; integral calculus on manifolds; exterior calculus. Note: this is a 57 MB PDF Document.

Material Type: Textbook

Author: Sternberg Shlomo and Lynn Loomis

Basic Analysis: Introduction to Real Analysis

(View Complete Item Description)

This free online textbook is a one semester course in basic analysis. These were my lecture notes for teaching Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in fall 2009. The course is a first course in mathematical analysis aimed at students who do not necessarily wish to continue a graduate study in mathematics. A Sample Darboux sums prerequisite for the course is a basic proof course. The course does not cover topics such as metric spaces, which a more advanced course would. It should be possible to use these notes for a beginning of a more advanced course, but further material should be added.

Material Type: Textbook

Author: Jiří Lebl

Business Calculus (MATH 148)

(View Complete Item Description)

MATH&148 is a calculus course for business students. It is designed for students who want a brief course in calculus. Topics include differential and integral calculus of elementary functions. Problems emphasize business and social science applications. Translating words into mathematics and solving word problems are emphasized over algebra. Applications are mainly business oriented (e.g. cost, revenue, and profit). Mathematical theory and complex algebraic manipulations are not mainstays of this course, which is designed to be less rigorous than the calculus sequence for scientists and engineers. Topics are presented according to the rule of four: geometrically, numerically, analytically, and verbally. That is, symbolic manipulation must be balanced with graphical interpretation, numerical examples, and writing. Trigonometry is not part of the course.

Material Type: Assessment, Full Course, Reading, Syllabus, Textbook

Calculus I

(View Complete Item Description)

This course begins with a review of algebra specifically designed to help and prepare the student for the study of calculus, and continues with discussion of functions, graphs, limits, continuity, and derivatives. The appendix provides a large collection of reference facts, geometry, and trigonometry that will assist in solving calculus problems long after the course is over. Upon successful completion of this course, the student will be able to: calculate or estimate limits of functions given by formulas, graphs, or tables by using properties of limits and LĺÎĺ_ĺĚĺ_hopitalĺÎĺ_ĺĚĺ_s Rule; state whether a function given by a graph or formula is continuous or differentiable at a given point or on a given interval and justify the answer; calculate average and instantaneous rates of change in context, and state the meaning and units of the derivative for functions given graphically; calculate derivatives of polynomial, rational, common transcendental functions, and implicitly defined functions; apply the ideas and techniques of derivatives to solve maximum and minimum problems and related rate problems, and calculate slopes and rates for function given as parametric equations; find extreme values of modeling functions given by formulas or graphs; predict, construct, and interpret the shapes of graphs; solve equations using NewtonĺÎĺ_ĺĚĺ_s Method; find linear approximations to functions using differentials; festate in words the meanings of the solutions to applied problems, attaching the appropriate units to an answer; state which parts of a mathematical statement are assumptions, such as hypotheses, and which parts are conclusions. This free course may be completed online at any time. It has been developed through a partnership with the Washington State Board for Community and Technical Colleges; the Saylor Foundation has modified some WSBCTC materials. (Mathematics 005)

Material Type: Assessment, Full Course, Reading, Syllabus, Textbook

Dynamical Systems

(View Complete Item Description)

This book addresses the following topics: Iterations and fixed points; bifurcations; conjugacy; space and time averages; the contraction fixed point theorem; Hutchinson's theorem and fractal images; hyperbolicity; and symbolic dynamics. 151 page pdf file.

Material Type: Textbook

Author: Shlomo Sternberg