All resources in Culver Academies

How Hot Is Hot? Heat versus Temperature

(View Complete Item Description)

The aim of this lesson is to introduce the concepts of heat and temperature, which many students find confusing. During the lesson, students will be asked to explore and discuss situations where even though the same amount of heat is absorbed by several substances, the increase in temperature of the substances is different. This video lesson presents a series of stories relating to heat and temperature, beginning with a visit to a factory where gamat oil is produced. In the video, a man dips his finger into boiling gamat oil yet feels no pain. The scene will draw students’ attention and raise their curiosity about how this is possible. Students will also carry out several experiments to compare and relate the situations where the same amount of heat absorbed by substances will result in different temperatures. By the end of this lesson, students will understand the term “specific heat capacity” and will recognize the difference between a high or low specific heat capacity. They will also understand the term “thermal diffusivity” and how this relates to the topic of the lesson. This lesson offers some authentic learning experiences where students will have the opportunity to relate the concept of heat and temperature to everyday situations. It will take about 50 minutes to complete - however, you may want to divide the lesson into two classes if the activities require more time.

Material Type: Lecture

Author: Mohd Zah Ismail, Mohd Suhaimi Mohd Ghazali

Ideal chain (entropic elasticity)

(View Complete Item Description)

In the first video segment, we present a cartoon model of a weighted chain, which can be regarded as an approximation for a polymer under tension (e.g. a strand of DNA being stretched out using optical tweezers). The Hamiltonian and partition function for this system are described in the second segment. Finally, in the third segment, we calculate the average energy and elongation of the chain.

Material Type: Lecture Notes

Author: David Liao

Kite Flying: Fun, Art and Science

(View Complete Item Description)

This lesson presents the basics of aerodynamics by using kite flying as an example, i.e., forces acting on a flying object. Students will measure the net force acting on a kite due to blowing air and will learn how a simple instrument like a spring can be used to measure such force. They will also examine and experience how the force on the kite is transferred to the string in the form of tension and will again measure that tension with a simple spring. This lesson will take about 30 minutes to complete. One will need a calibrated spring to measure forces, as well as a few springs to study the coplanar forces.

Material Type: Lecture

Knowing North

(View Complete Item Description)

This activity shows how our experience of the Sun changes with time and location. The sun dagger at Chaco Canyon is thought by many to be a sort of ancient timekeeping device. By creating a place where the movement of the Sun could be tracked day after day, Chacoans could mark the passage of time and gain an idea of when seasons were changing. If the Chacoans could use a particular location and the Sun to tell them about time, can we use time and the Sun to tell us about our location? In this easy experiment, you'll see how the position of the Sun in the sky is related to where we are on the earth.

Material Type: Activity/Lab

Laser Jello

(View Complete Item Description)

In this activity, learners use gelatin as a lens to investigate the properties of laser light. Learners can view total internal reflection of a beam of light and investigate angles of reflection and refraction. Using different colors of gelatin demonstrates its color filtering properties. Use this activity to help learners explore light reflection and refraction, wavelengths, color, and lenses.

Material Type: Activity/Lab

Laser Lissajous

(View Complete Item Description)

In this activity, learners use a laser pointer and two small rotating mirrors to create a variety of fascinating patterns, which can be easily and dramatically projected on a wall or screen. In this version of the activity, learners use binder clips to build the base of the device. Educators can use a pre-assembled device for demonstration purposes or engage learners in the building process.

Material Type: Activity/Lab

Authors: Don Rathjen, The Exploratorium

Look Into Infinity

(View Complete Item Description)

Learners use two mirrors to explore how images of images of images can repeat forever. This resource includes a light-ray diagram to help learners understand what they are seeing -- images appear to be grouped in pairs with a front side always facing a front side and a back side always facing a back side. Learners can assist in assembling the Infinity Mirror or use one that has been pre-assembled.

Material Type: Activity/Lab

Magic Wand

(View Complete Item Description)

In this activity about light and perception, learners create pictures in thin air. Using a simple set up of a slide projector, slide, moveable screen or poster board, and a "wand", learners investigate how we see projected images such as those from movies and television. Use this activity to help learners understand concepts associated with light and optics including persistence of vision, reflection, and map projection.

Material Type: Activity/Lab

Magnetic Pendulums

(View Complete Item Description)

In this activity and demonstration about electricity and magnetism, learners observe how the current generated when one copper coil swings through a magnetic field starts a second coil swinging. Learners also explore what happens when they change the polarity of the magnet, reverse the coil, or add a clip lead to short-circuit the coils. Use this activity to illustrate how electricity and magnetism interact. The assembly of the electromagnetic swing device takes about an hour.

Material Type: Activity/Lab

Magnetic Suction

(View Complete Item Description)

In this activity about electricity and magnetism, learners discover how a doorbell works. A coil of wire with current flowing through it forms an electromagnet that acts similar to a bar magnet. The coil will magnetize an iron nail and attract it in a remarkably vigorous way.

Material Type: Activity/Lab

Measuring Distances in the Milky Way

(View Complete Item Description)

The main aim of this lesson is to show students that distances may be determined without a meter stick—a concept fundamental to such measurements in astronomy. It introduces students to the main concepts behind the first rung of what astronomers call the distance ladder. The four main learning objectives are the following: 1) Explore, in practice, a means of measuring distances without what we most often consider the “direct” means: a meter stick; 2) Understand the limits of a method through the exploration of uncertainties; 3) Understand in the particular method used, the relationship between baseline and the accuracy of the measurement; and 4) Understand the astronomical applications and implications of the method and its limits. Students should be able to use trigonometry and know the relation between trigonometric functions and the triangle. A knowledge of derivatives is also needed to obtain the expression for the uncertainty on the distance measured. Students will need cardboard cut into disks. The number of disks is essentially equal to half the students in the class. Two straight drink straws and one pin per disk. Students will also need a protractor. The lesson should not take more than 50 minutes to complete if the students have the mathematical ability mentioned above. This lesson is complimentary to the BLOSSOMS lesson, "The Parallax Activity." The two lessons could be used sequentially - this one being more advanced - or they could be used separately.

Material Type: Lecture

Author: The Pythagorean Theorem: Geometry’s Most Elegant Theorem

Mirrorly a Window

(View Complete Item Description)

In this activity about light and reflection, learners discover that what you see is often affected by what you expect to see. Learners hold on to a device consisting of two mirrors glued back to back to each other with a dowel handle on either side. While looking at one side of the mirror, learners move one hand on the other side of the mirror. They will be surprised as their brain is fooled into thinking that the image it sees in the mirror is actually their other hand. Learners can participate in assembling the mirror device or use a pre-assembled one. This resource also includes a simpler version of this activity in the "etcetera" section at the bottom of the guide.

Material Type: Activity/Lab

Modeling and Simulation for High School Teachers: Principles, Problems, and Lesson Plans

(View Complete Item Description)

A collaboration between the National Aeronautics and Space Administration (NASA) and the CK-12 Foundation, this book provides high school mathematics and physics teachers with an introduction to the main principles of modeling and simulation used in science and engineering. An appendix of lesson plans is included.

Material Type: Lesson Plan, Teaching/Learning Strategy, Textbook

The Mysteries of Magnetism

(View Complete Item Description)

This lesson will explore the connections between magnetism in natural materials and electromagnetism. The ultimate goal will be for students to form an understanding that the source of magnetism in natural materials is moving charges. It is helpful, but not required, for the students to have some work with electricity, and other distance forces (such as gravity or the electric force). The lesson will probably take two 50-minute periods to complete. Although the video footage is brief, the activities are in depth, inquiry-based, and can take time for the students to explore. The materials are not specifically prescribed, but can include things such as bar magnets, compasses, iron filings, wire, batteries, steel bolts, coils, straws, and hot glue. The activities include drawing the magnetic fields of bar magnets and electromagnets. The activities also include making a magnet from a drinking straw and iron filings.

Material Type: Lecture

Author: Gary Garber

The Mystery of Motion: Momentum, Kinetic Energy and Their Conversion

(View Complete Item Description)

In this video lesson, the concept of momentum applied to hard-body collisions is explained using a number of simple demonstrations, all of which can be repeated in the classroom. Understanding Newton's Laws is fundamental to all of physics, and this lesson introduces the vital concepts of momentum and energy, and their conservation. Only some preliminary ideas of algebra are used here, and all the concepts presented can be found in any high-school level physics book. In terms of materials required, getting hold of large steel balls may not be easy, but large ball bearings can be procured easily. On the basis of what students have learned in the video, teachers can easily generate a large number of questions that relate to one's daily experiences, or which pose new challenges: for example, in a collision between a heavy and light vehicle, why do those inside the lighter one suffer less injury?

Material Type: Lecture

Author: Hoodbhoy

Numbers

(View Complete Item Description)

The purpose of this video tutorial is to review a couple ways in which we think about numbers. Thinking in terms of street numbers, money in bank accounts, and quantum particles (e.g. Bose-Einstein condensate) is contrasted with focusing on associating numbers with distinguishable manipulatives, as is more familiar in K-8 courses. This video concludes with a reminder that the symbol "infinity" is not, itself, a number.

Material Type: Lecture Notes

Author: David Liao

The Physics of Boomerangs

(View Complete Item Description)

This learning video explores the mysterious physics behind boomerangs and other rapidly spinning objects. Students will get to make and throw their own boomerangs between video segments! A key idea presented is how torque causes the precession of angular momentum. One class period is required to complete this learning video, and the optimal prerequisites are a familiarity with forces, Newton's laws, vectors and time derivatives. Each student would need the following materials for boomerang construction: cardboard (roughly the size of a postcard), ruler, pencil/pen, scissors, protractor, and a stapler.

Material Type: Lecture

Author: Zhiming Darren Tan

The Physics of Donkey Carts

(View Complete Item Description)

This video lesson explores Newton's Third Law of Motion through examination of several real world examples of this law in action, including that of a donkey cart - a site common in the streets of Pakistan. Students will understand that forces act on objects even if the objects appear to be static and that certain conditions - gravity in particular - affect how two objects interact. The time needed to complete this lesson is approximately 50-60 minutes, and students should be familiar with basic mechanics such as Newton's laws, levers, etc. The materials required are a couple of spring balances, a meter rule, tape, pencil, two desks, and some lab weights (few grams each). The types of in-class activities for between the video breaks include active discussions and participation by students in activities related to the Third Law.

Material Type: Lecture

Author: Naveed A. Malik