Permeability is the degree to which water or other liquids are able …
Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand and asphalt have varying levels of permeability. In this activity, students explore different levels of permeability and compare the permeabilities of several different materials. They also are introduced to the basic concepts of building design, landscape architecture and environmental pollutant transport. As an extension, they discuss the importance of correct drainage and urban design issues in sensitive environments such as coastal areas.
Students learn the importance of heat transfer and heat conductance. Using hot …
Students learn the importance of heat transfer and heat conductance. Using hot plates, student groups measure the temperature change of a liquid over a set time period and use the gathered data to calculate the heat transfer that occurs. Then, as if they were engineers, students pool their results to discuss and determine the best fluid to use in a car radiator.
The purpose of this activity is to demonstrate how drag affects falling …
The purpose of this activity is to demonstrate how drag affects falling objects. Students will make a variety of shapes out of paper and see how size and shape affects the speed with which their paper shapes fall.
Students learn about friction and drag two different forces that convert energy …
Students learn about friction and drag two different forces that convert energy of motion to heat. Both forces can act on a moving object and decrease its velocity. Students learn examples of friction and drag, and suggest ways to reduce the impact of these forces. The equation that governs common frictional forces is introduced, and during a hands-on activity, students experimentally measure a coefficient of friction.
With an introduction to the ideas of energy, students discuss specific types …
With an introduction to the ideas of energy, students discuss specific types of energy and the practical sources of energy. Hands-on activities help them identify types of energy in their surroundings and enhance their understanding of energy.
Students are introduced to the concepts of air pollution and air quality. …
Students are introduced to the concepts of air pollution and air quality. The three lesson parts focus on the prerequisites for understanding air pollution. First, students use M&Ms to create a pie graph that expresses their understanding of the composition of air. Next, students watch and conduct several simple experiments to develop an understanding of the properties of air (it has mass, it takes up space, it can move, it exerts pressure, it can do work). Finally, students develop awareness and understanding of the daily air quality using the Air Quality Index (AQI) listed in the newspaper. In an associated literacy activity, students explore the environmental history timeline.
In a class discussion format, the teacher presents background information about basic …
In a class discussion format, the teacher presents background information about basic human genetics. The number of chromosomes in both body cells and egg and sperm cells is covered, as well as the concept of dominant and recessive alleles. Students determine whether or not they possess the dominant allele for the tongue-rolling gene as an example.
During this activity, students learn how oil is formed and where in …
During this activity, students learn how oil is formed and where in the Earth we find it. Students take a core sample to look for oil in a model of the Earth. They analyze their sample and make an informed decision as to whether or not they should "drill for oil" in a specific location.
Students learn about physical models of groundwater and how environmental engineers determine …
Students learn about physical models of groundwater and how environmental engineers determine possible sites for drinking water wells. During the activity, students create their own groundwater well models using coffee cans and wire screening. They add red food coloring to their models to see how pollutants can migrate through the groundwater into a drinking water resource.
In this activity, students use models to investigate the process and consequences …
In this activity, students use models to investigate the process and consequences of water contamination on the land, groundwater, and plants. This is a good introduction to building water filters found in the associated activity, The Dirty Water Project.
Students develop an understanding of the effects of invisible air pollutants with …
Students develop an understanding of the effects of invisible air pollutants with a rubber band and hanger air test and a bean plant experiment. They also learn about methods of reducing invisible air pollutants.
With the help of simple, teacher-led demonstration activities, students learn the basic …
With the help of simple, teacher-led demonstration activities, students learn the basic physics of heat transfer by means of conduction, convection, and radiation. They also learn about examples of heating and cooling devices, from stove tops to car radiators, that they encounter everyday in their homes, schools, and modes of transportation. Since in our everyday lives there are many times that we want to prevent heat transfer, students also consider ways that conduction, convection, and radiation can be reduced or prevented from occurring.
Expanding on the topic of objects in motion covering Newton's laws of …
Expanding on the topic of objects in motion covering Newton's laws of motion, acceleration and velocity, which are taught starting in third grade, students are introduced to new concepts of speed, density, level of service (LOS) (quality of roadways), delay and congestion. Every day we are affected by congestion even if we do not step out of our homes. For example, the price we pay for goods increases due to increases in shipping costs caused by congestion delays. A congestion metric would help us to compare roadways and assess improvement methods. A common metric used to measure congestion is called level of service (LOS).
Students write letters as part of an environmental action campaign. They become …
Students write letters as part of an environmental action campaign. They become more aware of global environmental problems and play a part in their solution.
Students measure the wavelength of sounds and learn basic vocabulary associated with …
Students measure the wavelength of sounds and learn basic vocabulary associated with waves. As a class, they brainstorm the difference between two tuning forks and the sounds they produce. Then they come up with a way to measure that difference. Using a pipe in a graduated cylinder filled with water, students measure the wavelength of various tuning forks by finding the height the pipe must be held at to produce the loudest note. After calculating the wavelength and comparing it to the pitch of each tuning fork, students discover the relationship between wavelength and pitch.
Students use conductivity meters to measure various salt and water solutions, as …
Students use conductivity meters to measure various salt and water solutions, as indicated by the number of LEDs (light emitting diodes) that illuminate on the meter. Students create calibration curves using known amounts of table salt dissolved in water and their corresponding conductivity readings. Using their calibration curves, students estimate the total equivalent amount of salt contained in Gatorade (or other sports drinks and/or unknown salt solutions). This activity reinforces electrical engineering concepts, such as the relationship between electrical potential, current and resistance, as well as the typical circuitry components that represent these phenomena. The concept of conductors is extended to ions that are dissolved in solution to illustrate why electrolytic solutions support the passage of currents.
Students learn of the impending asteroid impact scenario, form teams and begin …
Students learn of the impending asteroid impact scenario, form teams and begin to study the situation in depth. A simple in-class simulation shows them the potential for destruction and disaster. They complete worksheets and look at maps to help them define and understand the problem: What is the needed cavern size and depth? What are the geographical areas and natural features? A homework measurement assignment prepares them for the next lesson/activity.
How does our climate affect us? How do we decide what to …
How does our climate affect us? How do we decide what to wear each day? What factors determine if our clothing choices are comfortable? What is the source of our water? Students explore characteristics that define climatic regions. They learn how tropical, desert, coastal and alpine climates result in different lifestyle, clothing, water source and food options for the people who live there. They learn that a location's latitude, altitude, land features, weather conditions, and distance from large bodies of water, determines its climate. Students discuss how engineers help us adapt to all climates by designing clothing, shelters, weather technologies and clean water systems.
In this open-ended design activity, students use everyday materials milk cartons, water …
In this open-ended design activity, students use everyday materials milk cartons, water bottles, pencils, straws, candy to build small-scale transportation devices. They incorporate the use two simple machines a wheel and axle, and a lever into their designs. Student pairs choose their materials and engineer solutions suitable to convey pyramid-building materials (small blocks of clay). They race their carts/trucks, measuring distance, time and weight; and then calculate speed.
In the first half of this two-part activity, students practice solving problems …
In the first half of this two-part activity, students practice solving problems involving refraction using the index of refraction and Snell's law equations; they mathematically solve for precise angles and speeds caused by refraction. In the second half of the activity, a hands-on lab, they apply the analytical skills required by the problem set to reflectance measurements of porous silicon thin films, including how reflectance measurements would change if various aspects of the film were altered. Students predict the data output in the form of reflectance measurements when samples are altered, which connects to the idea of being able to make predictions about the data output of a biosensing thin film that couples with a target molecule.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.