Updating search results...

Education

Teaching, learning, and pedagogy about or using open scholarship. Open Education, OER Repositories, copyright, and more.

81 affiliated resources

Search Resources

View
Selected filters:
Programming with MATLAB
Unrestricted Use
CC BY
Rating
0.0 stars

The best way to learn how to program is to do something useful, so this introduction to MATLAB is built around a common scientific task: data analysis. Our real goal isn’t to teach you MATLAB, but to teach you the basic concepts that all programming depends on. We use MATLAB in our lessons because: we have to use something for examples; it’s well-documented; it has a large (and growing) user base among scientists in academia and industry; and it has a large library of packages available for performing diverse tasks. But the two most important things are to use whatever language your colleagues are using, so that you can share your work with them easily, and to use that language well.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Gerard Capes
Date Added:
03/20/2017
Programming with Python
Unrestricted Use
CC BY
Rating
0.0 stars

The best way to learn how to program is to do something useful, so this introduction to Python is built around a common scientific task: data analysis. Arthritis Inflammation We are studying inflammation in patients who have been given a new treatment for arthritis, and need to analyze the first dozen data sets of their daily inflammation. The data sets are stored in comma-separated values (CSV) format: each row holds information for a single patient, columns represent successive days. The first three rows of our first file look like this: 0,0,1,3,1,2,4,7,8,3,3,3,10,5,7,4,7,7,12,18,6,13,11,11,7,7,4,6,8,8,4,4,5,7,3,4,2,3,0,0 0,1,2,1,2,1,3,2,2,6,10,11,5,9,4,4,7,16,8,6,18,4,12,5,12,7,11,5,11,3,3,5,4,4,5,5,1,1,0,1 0,1,1,3,3,2,6,2,5,9,5,7,4,5,4,15,5,11,9,10,19,14,12,17,7,12,11,7,4,2,10,5,4,2,2,3,2,2,1,1 Each number represents the number of inflammation bouts that a particular patient experienced on a given day. For example, value “6” at row 3 column 7 of the data set above means that the third patient was experiencing inflammation six times on the seventh day of the clinical study. So, we want to: Calculate the average inflammation per day across all patients. Plot the result to discuss and share with colleagues. To do all that, we’ll have to learn a little bit about programming.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Lauren Ko
Maxim Belkin
Trevor Bekolay
Valentina Staneva
Date Added:
08/07/2020
Programming with R
Unrestricted Use
CC BY
Rating
0.0 stars

The best way to learn how to program is to do something useful, so this introduction to R is built around a common scientific task: data analysis. Our real goal isn’t to teach you R, but to teach you the basic concepts that all programming depends on. We use R in our lessons because: we have to use something for examples; it’s free, well-documented, and runs almost everywhere; it has a large (and growing) user base among scientists; and it has a large library of external packages available for performing diverse tasks. But the two most important things are to use whatever language your colleagues are using, so you can share your work with them easily, and to use that language well. We are studying inflammation in patients who have been given a new treatment for arthritis, and need to analyze the first dozen data sets of their daily inflammation. The data sets are stored in CSV format (comma-separated values): each row holds information for a single patient, and the columns represent successive days. The first few rows of our first file look like this: 0,0,1,3,1,2,4,7,8,3,3,3,10,5,7,4,7,7,12,18,6,13,11,11,7,7,4,6,8,8,4,4,5,7,3,4,2,3,0,0 0,1,2,1,2,1,3,2,2,6,10,11,5,9,4,4,7,16,8,6,18,4,12,5,12,7,11,5,11,3,3,5,4,4,5,5,1,1,0,1 0,1,1,3,3,2,6,2,5,9,5,7,4,5,4,15,5,11,9,10,19,14,12,17,7,12,11,7,4,2,10,5,4,2,2,3,2,2,1,1 0,0,2,0,4,2,2,1,6,7,10,7,9,13,8,8,15,10,10,7,17,4,4,7,6,15,6,4,9,11,3,5,6,3,3,4,2,3,2,1 0,1,1,3,3,1,3,5,2,4,4,7,6,5,3,10,8,10,6,17,9,14,9,7,13,9,12,6,7,7,9,6,3,2,2,4,2,0,1,1 We want to: load that data into memory, calculate the average inflammation per day across all patients, and plot the result. To do all that, we’ll have to learn a little bit about programming.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Diya Das
Katrin Leinweber
Rohit Goswami
Date Added:
03/20/2017
Project Organization and Management for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry Genomics workshop lesson to learn how to structure your metadata, organize and document your genomics data and bioinformatics workflow, and access data on the NCBI sequence read archive (SRA) database. Good data organization is the foundation of any research project. It not only sets you up well for an analysis, but it also makes it easier to come back to the project later and share with collaborators, including your most important collaborator - future you. Organizing a project that includes sequencing involves many components. There’s the experimental setup and conditions metadata, measurements of experimental parameters, sequencing preparation and sample information, the sequences themselves and the files and workflow of any bioinformatics analysis. So much of the information of a sequencing project is digital, and we need to keep track of our digital records in the same way we have a lab notebook and sample freezer. In this lesson, we’ll go through the project organization and documentation that will make an efficient bioinformatics workflow possible. Not only will this make you a more effective bioinformatics researcher, it also prepares your data and project for publication, as grant agencies and publishers increasingly require this information. In this lesson, we’ll be using data from a study of experimental evolution using E. coli. More information about this dataset is available here. In this study there are several types of files: Spreadsheet data from the experiment that tracks the strains and their phenotype over time Spreadsheet data with information on the samples that were sequenced - the names of the samples, how they were prepared and the sequencing conditions The sequence data Throughout the analysis, we’ll also generate files from the steps in the bioinformatics pipeline and documentation on the tools and parameters that we used. In this lesson you will learn: How to structure your metadata, tabular data and information about the experiment. The metadata is the information about the experiment and the samples you’re sequencing. How to prepare for, understand, organize and store the sequencing data that comes back from the sequencing center How to access and download publicly available data that may need to be used in your bioinformatics analysis The concepts of organizing the files and documenting the workflow of your bioinformatics analysis

Subject:
Business and Communication
Genetics
Life Science
Management
Material Type:
Module
Provider:
The Carpentries
Author:
Amanda Charbonneau
Bérénice Batut
Daniel O. S. Ouso
Deborah Paul
Erin Alison Becker
François Michonneau
Jason Williams
Juan A. Ugalde
Kevin Weitemier
Laura Williams
Paula Andrea Martinez
Peter R. Hoyt
Rayna Michelle Harris
Taylor Reiter
Toby Hodges
Tracy Teal
Date Added:
08/07/2020
Project Teaching Integrity in Empirical Research (TIER)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The Project Teaching Integrity in Empirical Research (TIER) develops methods and tools for enhancing research transparency through teaching. These can be used by faculty who teach quantitative methods or supervise student research. TIER further provides guidance to students who want to adopt transparent and replicable research practices independently.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Teaching/Learning Strategy
Provider:
Project TIER
Date Added:
11/07/2014
PsyTeachR
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Materials for the University of Glasgow Institute of Neuroscience and Psychology’s undergraduate and MSc methods courses + Experiences, insights, and materials for teaching R across all undergraduate and postgraduate levels.

Subject:
Psychology
Social Science
Material Type:
Textbook
Provider:
University of Glasgow
Date Added:
06/18/2020
Python for Humanities
Unrestricted Use
CC BY
Rating
0.0 stars

Python is a general purpose programming language that is useful for writing scripts to work effectively and reproducibly with data. This is an introduction to Python designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about Python syntax, the Jupyter notebook interface, and move through how to import CSV files, using the pandas package to work with data frames, how to calculate summary information from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from Python.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Iain Emsley
Date Added:
08/07/2020
Replication and Bias in (Special) Education Research Base
Unrestricted Use
CC BY
Rating
0.0 stars

This is a clearinghouse for resources related to open science in Special Education. If you find a good resource that has not been included, please email it to marcy@cos.io.

Subject:
Education
Material Type:
Reading
Author:
OSKB Admin
Date Added:
05/03/2021
R for Reproducible Scientific Analysis
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson in part of Software Carpentry workshop and teach novice programmers to write modular code and best practices for using R for data analysis. an introduction to R for non-programmers using gapminder data The goal of this lesson is to teach novice programmers to write modular code and best practices for using R for data analysis. R is commonly used in many scientific disciplines for statistical analysis and its array of third-party packages. We find that many scientists who come to Software Carpentry workshops use R and want to learn more. The emphasis of these materials is to give attendees a strong foundation in the fundamentals of R, and to teach best practices for scientific computing: breaking down analyses into modular units, task automation, and encapsulation. Note that this workshop will focus on teaching the fundamentals of the programming language R, and will not teach statistical analysis. The lesson contains more material than can be taught in a day. The instructor notes page has some suggested lesson plans suitable for a one or half day workshop. A variety of third party packages are used throughout this workshop. These are not necessarily the best, nor are they comprehensive, but they are packages we find useful, and have been chosen primarily for their usability.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam H. Sparks
Ahsan Ali Khoja
Amy Lee
Ana Costa Conrado
Andrew Boughton
Andrew Lonsdale
Andrew MacDonald
Andris Jankevics
Andy Teucher
Antonio Berlanga-Taylor
Ashwin Srinath
Ben Bolker
Bill Mills
Bret Beheim
Clare Sloggett
Daniel
Dave Bridges
David J. Harris
David Mawdsley
Dean Attali
Diego Rabatone Oliveira
Drew Tyre
Elise Morrison
Erin Alison Becker
Fernando Mayer
François Michonneau
Giulio Valentino Dalla Riva
Gordon McDonald
Greg Wilson
Harriet Dashnow
Ido Bar
Jaime Ashander
James Balamuta
James Mickley
Jamie McDevitt-Irwin
Jeffrey Arnold
Jeffrey Oliver
John Blischak
Jonah Duckles
Josh Quan
Julia Piaskowski
Kara Woo
Kate Hertweck
Katherine Koziar
Katrin Leinweber
Kellie Ottoboni
Kevin Weitemier
Kiana Ashley West
Kieran Samuk
Kunal Marwaha
Kyriakos Chatzidimitriou
Lachlan Deer
Lex Nederbragt
Liz Ing-Simmons
Lucy Chang
Luke W Johnston
Luke Zappia
Marc Sze
Marie-Helene Burle
Marieke Frassl
Mark Dunning
Martin John Hadley
Mary Donovan
Matt Clark
Melissa Kardish
Mike Jackson
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Nelly Sélem
Nicholas Lesniak
Nicholas Potter
Nima Hejazi
Nora Mitchell
Olivia Rata Burge
Paula Andrea Martinez
Pete Bachant
Phil Bouchet
Philipp Boersch-Supan
Piotr Banaszkiewicz
Raniere Silva
Rayna Michelle Harris
Remi Daigle
Research Bazaar
Richard Barnes
Robert Bagchi
Rémi Emonet
Sam Penrose
Sandra Brosda
Sarah Munro
Sasha Lavrentovich
Scott Allen Funkhouser
Scott Ritchie
Sebastien Renaut
Thea Van Rossum
Timothy Eoin Moore
Timothy Rice
Tobin Magle
Trevor Bekolay
Tyler Crawford Kelly
Vicken Hillis
Yuka Takemon
bippuspm
butterflyskip
waiteb5
Date Added:
03/20/2017
R for Social Scientists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson part of the Social Sciences curriculum. This lesson teaches how to analyse and visualise data used by social scientists. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with social sciences data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Angela Li
Ben Marwick
Christina Maimone
Danielle Quinn
Erin Alison Becker
Francois Michonneau
Geoffrey LaFlair
Hao Ye
Jake Kaupp
Juan Fung
Katrin Leinweber
Martin Olmos
Murray Cadzow
Date Added:
08/07/2020
R para Análisis Científicos Reproducibles
Unrestricted Use
CC BY
Rating
0.0 stars

Una introducción a R utilizando los datos de Gapminder. El objetivo de esta lección es enseñar a las programadoras principiantes a escribir códigos modulares y adoptar buenas prácticas en el uso de R para el análisis de datos. R nos provee un conjunto de paquetes desarrollados por terceros que se usan comúnmente en diversas disciplinas científicas para el análisis estadístico. Encontramos que muchos científicos que asisten a los talleres de Software Carpentry utilizan R y quieren aprender más. Nuestros materiales son relevantes ya que proporcionan a los asistentes una base sólida en los fundamentos de R y enseñan las mejores prácticas del cómputo científico: desglose del análisis en módulos, automatización tareas y encapsulamiento. Ten en cuenta que este taller se enfoca en los fundamentos del lenguaje de programación R y no en el análisis estadístico. A lo largo de este taller se utilizan una variedad de paquetes desarrolados por terceros, los cuales no son necesariamente los mejores ni se encuentran explicadas todas sus funcionalidades, pero son paquetes que consideramos útiles y han sido elegidos principalmente por su facilidad de uso.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
A. s
Alejandra Gonzalez-Beltran
Ana Beatriz Villaseñor Altamirano
Antonio
AntonioJBT
Belinda Weaver
Claudia Engel
Cynthia Monastirsky
Daniel Beiter
David Mawdsley
David Pérez-Suárez
Erin Becker
EuniceML
François Michonneau
Gordon McDonald
Guillermina Actis
Guillermo Movia
Hely Salgado
Ido Bar
Ivan Ogasawara
Ivonne Lujano
James J Balamuta
Jamie McDevitt-Irwin
Jeff Oliver
Jonah Duckles
Juan M. Barrios
Katrin Leinweber
Kevin Alquicira
Kevin Martínez-Folgar
Laura Angelone
Laura-Gomez
Leticia Vega
Marcela Alfaro Córdoba
Marceline Abadeer
Maria Florencia D'Andrea
Marie-Helene Burle
Marieke Frassl
Matias Andina
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Paola Prieto
Paula Andrea Martinez
Raniere Silva
Rayna M Harris
Richard Barnes
Richard McCosh
Romualdo Zayas-Lagunas
Sandra Brosda
Sasha Lavrentovich
Shirley Alquicira Hernandez
Silvana Pereyra
Tobin Magle
Veronica Jimenez
juli arancio
raynamharris
saynomoregrl
Date Added:
08/07/2020
Social Science Workshop Overview
Unrestricted Use
CC BY
Rating
0.0 stars

Workshop overview for the Data Carpentry Social Sciences curriculum. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. This workshop teaches data management and analysis for social science research including best practices for data organization in spreadsheets, reproducible data cleaning with OpenRefine, and data analysis and visualization in R. This curriculum is designed to be taught over two full days of instruction. Materials for teaching data analysis and visualization in Python and extraction of information from relational databases using SQL are in development. Interested in teaching these materials? We have an onboarding video and accompanying slides available to prepare Instructors to teach these lessons. After watching this video, please contact team@carpentries.org so that we can record your status as an onboarded Instructor. Instructors who have completed onboarding will be given priority status for teaching at centrally-organized Data Carpentry Social Sciences workshops.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Angela Li
Erin Alison Becker
Francois Michonneau
Maneesha Sane
Sarah Brown
Tracy Teal
Date Added:
08/07/2020
Statistics with JASP and the Open Science Framework
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar will introduce the integration of JASP Statistical Software (https://jasp-stats.org/) with the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github, Mendeley, and now is integrated with JASP, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Trainer Space for the Introduction to Open and Reproducible Research Workshop
Unrestricted Use
CC BY
Rating
0.0 stars

Central location housing curriculum materials and planning tools for trainers of the COS Introduction to Open and Reproducible Research workshop.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Activity/Lab
Provider:
Center for Open Science
Author:
Courtney K. Soderberg
Ian Sullivan
Jennifer Freeman Smith
Jolene Esposito
Matthew Spitzer
Natalie Meyers
Date Added:
04/24/2019
The Unix Shell
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lesson on how to use the shell to navigate the filesystem and write simple loops and scripts. The Unix shell has been around longer than most of its users have been alive. It has survived so long because it’s a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so they aren’t typing the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including “high-performance computing” supercomputers). These lessons will start you on a path towards using these resources effectively.

Subject:
Applied Science
Computer Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Adam James Orr
Adam Richie-Halford
AidaMirsalehi
Alex Kassil
Alex Mac
Alexander Konovalov
Alexander Morley
Alix Keener
Amy Brown
Andrea Bedini
Andrew Boughton
Andrew Reid
Andrew T. T. McRae
Andrew Walker
Ariel Rokem
Armin Sobhani
Ashwin Srinath
Bagus Tris Atmaja
Bartosz Telenczuk
Ben Bolker
Benjamin Gabriel
Bertie Seyffert
Bill Mills
Brian Ballsun-Stanton
BrianBill
Camille Marini
Chris Mentzel
Christina Koch
Colin Morris
Colin Sauze
Damien Irving
Dan Jones
Dana Brunson
Daniel Baird
Daniel McCloy
Daniel Standage
Danielle M. Nielsen
Dave Bridges
David Eyers
David McKain
David Vollmer
Dean Attali
Devinsuit
Dmytro Lituiev
Donny Winston
Doug Latornell
Dustin Lang
Elena Denisenko
Emily Dolson
Emily Jane McTavish
Eric Jankowski
Erin Alison Becker
Ethan P White
Evgenij Belikov
Farah Shamma
Fatma Deniz
Filipe Fernandes
Francis Gacenga
François Michonneau
Gabriel A. Devenyi
Gerard Capes
Giuseppe Profiti
Greg Wilson
Halle Burns
Hannah Burkhardt
Harriet Alexander
Hugues Fontenelle
Ian van der Linde
Inigo Aldazabal Mensa
Jackie Milhans
Jake Cowper Szamosi
James Guelfi
Jan T. Kim
Jarek Bryk
Jarno Rantaharju
Jason Macklin
Jay van Schyndel
Jens vdL
John Blischak
John Pellman
John Simpson
Jonah Duckles
Jonny Williams
Joshua Madin
Kai Blin
Kathy Chung
Katrin Leinweber
Kevin M. Buckley
Kirill Palamartchouk
Klemens Noga
Kristopher Keipert
Kunal Marwaha
Laurence
Lee Zamparo
Lex Nederbragt
M Carlise
Mahdi Sadjadi
Marc Rajeev Gouw
Marcel Stimberg
Maria Doyle
Marie-Helene Burle
Marisa Lim
Mark Mandel
Martha Robinson
Martin Feller
Matthew Gidden
Matthew Peterson
Megan Fritz
Michael Zingale
Mike Henry
Mike Jackson
Morgan Oneka
Murray Hoggett
Nicola Soranzo
Nicolas Barral
Noah D Brenowitz
Noam Ross
Norman Gray
Orion Buske
Owen Kaluza
Patrick McCann
Paul Gardner
Pauline Barmby
Peter R. Hoyt
Peter Steinbach
Philip Lijnzaad
Phillip Doehle
Piotr Banaszkiewicz
Rafi Ullah
Raniere Silva
Robert A Beagrie
Ruud Steltenpool
Ry4an Brase
Rémi Emonet
Sarah Mount
Sarah Simpkin
Scott Ritchie
Stephan Schmeing
Stephen Jones
Stephen Turner
Steve Leak
Stéphane Guillou
Susan Miller
Thomas Mellan
Tim Keighley
Tobin Magle
Tom Dowrick
Trevor Bekolay
Varda F. Hagh
Victor Koppejan
Vikram Chhatre
Yee Mey
csqrs
earkpr
ekaterinailin
nther
reshama shaikh
s-boardman
sjnair
Date Added:
03/20/2017
Version Control with Git
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is part of the Software Carpentry workshops that teach how to use version control with Git. Wolfman and Dracula have been hired by Universal Missions (a space services spinoff from Euphoric State University) to investigate if it is possible to send their next planetary lander to Mars. They want to be able to work on the plans at the same time, but they have run into problems doing this in the past. If they take turns, each one will spend a lot of time waiting for the other to finish, but if they work on their own copies and email changes back and forth things will be lost, overwritten, or duplicated. A colleague suggests using version control to manage their work. Version control is better than mailing files back and forth: Nothing that is committed to version control is ever lost, unless you work really, really hard at it. Since all old versions of files are saved, it’s always possible to go back in time to see exactly who wrote what on a particular day, or what version of a program was used to generate a particular set of results. As we have this record of who made what changes when, we know who to ask if we have questions later on, and, if needed, revert to a previous version, much like the “undo” feature in an editor. When several people collaborate in the same project, it’s possible to accidentally overlook or overwrite someone’s changes. The version control system automatically notifies users whenever there’s a conflict between one person’s work and another’s. Teams are not the only ones to benefit from version control: lone researchers can benefit immensely. Keeping a record of what was changed, when, and why is extremely useful for all researchers if they ever need to come back to the project later on (e.g., a year later, when memory has faded). Version control is the lab notebook of the digital world: it’s what professionals use to keep track of what they’ve done and to collaborate with other people. Every large software development project relies on it, and most programmers use it for their small jobs as well. And it isn’t just for software: books, papers, small data sets, and anything that changes over time or needs to be shared can and should be stored in a version control system.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander G. Zimmerman
Amiya Maji
Amy L Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Ben Bolker
Bill Sacks
Brian Moore
Casey Youngflesh
Charlotte Moragh Jones-Todd
Christoph Junghans
David Jennings
Erin Alison Becker
François Michonneau
Garrett Bachant
Grant Sayer
Holger Dinkel
Ian Lee
Jake Lever
James E McClure
James Tocknell
Janoš Vidali
Jeremy Teitelbaum
Jeyashree Krishnan
Jimmy O'Donnell
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Oscar Arbeláez
Peace Ossom Williamson
Pey Lian Lim
Raniere Silva
Rayna Michelle Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Simon Waldman
Stefan Siegert
Thomas Morrell
Tommy Keswick
Traci P
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
Wolmar Nyberg Åkerström
abracarambar
butterflyskip
jonestoddcm
Date Added:
03/20/2017
Version control with the OSF
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar will introduce the concept of version control and the version control features that are built into the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency. This webinar will discuss how keeping track of the different file versions is important for efficient reproducible research practices, how version control works on the OSF, and how researchers can view and download previous versions of files.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
The What, Why, and How of Preregistration
Unrestricted Use
CC BY
Rating
0.0 stars

More researchers are preregistering their studies as a way to combat publication bias and improve the credibility of research findings. Preregistration is at its core designed to distinguish between confirmatory and exploratory results. Both are important to the progress of science, but when they are conflated, problems arise. In this webinar, we discuss the What, Why, and How of preregistration and what it means for the future of science. Visit cos.io/prereg for additional resources.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
What is statistical power
Unrestricted Use
CC BY
Rating
0.0 stars

This video is the first in a series of videos related to the basics of power analyses. All materials shown in the video, as well as content from the other videos in the power analysis series can be found here: https://osf.io/a4xhr/

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020