Updating search results...

Education

Teaching, learning, and pedagogy about or using open scholarship. Open Education, OER Repositories, copyright, and more.

81 affiliated resources

Search Resources

View
Selected filters:
Deep Dive on Open Practices: Understanding Preregistration with Scott Peters & Karen Rambo-Hernandez
Unrestricted Use
Public Domain
Rating
0.0 stars

In this deep dive session, we introduce the basics of pre-registration: a method for creating a permanent record of a research plan prior to conducting data collection and/or data analysis. We discuss the conceptual similarities and practical differences between pre-registration and registered reports and traditional approaches to educational research. We provide some practical advice from our own experiences using this practice in our own research and resources available for researchers interested in pre-registering their work. Finally, we end with questions and discussion about adopting pre-registration practices and unique considerations for implementing pre-registration in education research.

Subject:
Education
Material Type:
Lecture
Author:
Karen Rambo-Hernandez
Scott Peters
Date Added:
04/20/2022
Deep Dive on Open Practices: Understanding Registered Reports in Education Research
Unrestricted Use
Public Domain
Rating
0.0 stars

Deep Dive on Open Practices: Understanding Registered Reports in Education Research with Amanda Montoya and Betsy McCoach - Registered reports are a new publication mechanism where peer review and the decision to publish the results of a study occur prior to data collection and/or analysis. Registered reports share many characteristics with preregistration but are distinct by involving the journal prior to completing the study. Journals in the field of education are increasingly offering opportunities to publish registered reports. Registered reports offer a variety of benefits to both the researcher and to the research field. In this workshop, we will discuss the basics of registered reports, benefits and limitations of registered reports, and which journals in education accept registered reports. We provide some practical advice on deciding which projects are appropriate for registered reports, implementing registered reports, and time management throughout the process. We discuss how special cases can be implemented as registered reports, such as secondary data analysis, replications, meta-analyses, and longitudinal studies.

Subject:
Education
Material Type:
Lecture
Author:
Betsy McCoach
Amanda Montoya
Date Added:
04/20/2022
Deep Dive on Open Practices: Understanding Replication in Education Research with Matt Makel
Unrestricted Use
Public Domain
Rating
0.0 stars

Deep Dive on Open Practices: Understanding Replication in Education Research with Matt Makel - In this deep dive session, we introduce the purpose of replication, different conceptions of replication, and some models for implementation in education. Relevant terms, methods, publication possibilities, and existing funding mechanisms are reviewed. Frequently asked questions and potential answers are shared.

Subject:
Education
Material Type:
Lesson
Author:
Matt Makel
Date Added:
04/20/2022
Degrees of Freedom in Planning, Running, Analyzing, and Reporting Psychological Studies: A Checklist to Avoid p-Hacking
Unrestricted Use
CC BY
Rating
0.0 stars

The designing, collecting, analyzing, and reporting of psychological studies entail many choices that are often arbitrary. The opportunistic use of these so-called researcher degrees of freedom aimed at obtaining statistically significant results is problematic because it enhances the chances of false positive results and may inflate effect size estimates. In this review article, we present an extensive list of 34 degrees of freedom that researchers have in formulating hypotheses, and in designing, running, analyzing, and reporting of psychological research. The list can be used in research methods education, and as a checklist to assess the quality of preregistrations and to determine the potential for bias due to (arbitrary) choices in unregistered studies.

Subject:
Psychology
Social Science
Material Type:
Reading
Provider:
Frontiers in Psychology
Author:
Coosje L. S. Veldkamp
Hilde E. M. Augusteijn
Jelte M. Wicherts
Marcel A. L. M. van Assen
Marjan Bakker
Robbie C. M. van Aert
Date Added:
08/07/2020
Economics Lesson with Stata
Unrestricted Use
CC BY
Rating
0.0 stars

A Data Carpentry curriculum for Economics is being developed by Dr. Miklos Koren at Central European University. These materials are being piloted locally. Development for these lessons has been supported by a grant from the Sloan Foundation.

Subject:
Applied Science
Computer Science
Economics
Information Science
Mathematics
Measurement and Data
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Andras Vereckei
Arieda Muço
Miklós Koren
Date Added:
08/07/2020
El Control de Versiones con Git
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lección para control de versiones con Git Para ilustrar el poder de Git y GitHub, usaremos la siguiente historia como un ejemplo motivador a través de esta lección. El Hombre Lobo y Drácula han sido contratados por Universal Missions para investigar si es posible enviar su próximo explorador planetario a Marte. Ellos quieren poder trabajar al mismo tiempo en los planes, pero ya han experimentado ciertos problemas anteriormente al hacer algo similar. Si se rotan por turnos entonces cada uno gastará mucho tiempo esperando a que el otro termine, pero si trabajan en sus propias copias e intercambian los cambios por email, las cosas se perderán, se sobreescribirán o se duplicarán. Un colega sugiere utilizar control de versiones para lidiar con el trabajo. El control de versiones es mejor que el intercambio de ficheros por email: Nada se pierde una vez que se incluye bajo control de versiones, a no ser que se haga un esfuerzo sustancial. Como se van guardando todas las versiones precedentes de los ficheros, siempre es posible volver atrás en el tiempo y ver exactamente quién escribió qué en un día en particular, o qué versión de un programa fue utilizada para generar un conjunto de resultados en particular. Como se tienen estos registros de quién hizo qué y en qué momento, es posible saber a quién preguntar si se tiene una pregunta en un momento posterior y, si es necesario, revertir el contenido a una versión anterior, de forma similar a como funciona el comando “deshacer” de los editores de texto. Cuando varias personas colaboran en el mismo proyecto, es posible pasar por alto o sobreescribir de manera accidental los cambios hechos por otra persona. El sistema de control de versiones notifica automáticamente a los usuarios cada vez que hay un conflicto entre el trabajo de una persona y la otra. Los equipos no son los únicos que se benefician del control de versiones: los investigadores independientes se pueden beneficiar en gran medida. Mantener un registro de qué ha cambiado, cuándo y por qué es extremadamente útil para todos los investigadores si alguna vez necesitan retomar el proyecto en un momento posterior (e.g. un año después, cuando se ha desvanecido el recuerdo de los detalles).

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alejandra Gonzalez-Beltran
Amy Olex
Belinda Weaver
Bradford Condon
Casey Youngflesh
Daisie Huang
Dani Ledezma
Francisco Palm
Garrett Bachant
Heather Nunn
Hely Salgado
Ian Lee
Ivan Gonzalez
James E McClure
Javier Forment
Jimmy O'Donnell
Jonah Duckles
K.E. Koziar
Katherine Koziar
Katrin Leinweber
Kevin Alquicira
Kevin MF
Kurt Glaesemann
LauCIFASIS
Leticia Vega
Lex Nederbragt
Mark Woodbridge
Matias Andina
Matt Critchlow
Mingsheng Zhang
Nelly Sélem
Nima Hejazi
Nohemi Huanca Nunez
Olemis Lang
P. L. Lim
Paula Andrea Martinez
Peace Ossom Williamson
Rayna M Harris
Romualdo Zayas-Lagunas
Sarah Stevens
Saskia Hiltemann
Shirley Alquicira
Silvana Pereyra
Tom Morrell
Valentina Bonetti
Veronica Ikeshoji-Orlati
Veronica Jimenez
butterflyskip
dounia
Date Added:
08/07/2020
Foster Open Science
Unrestricted Use
CC BY
Rating
0.0 stars

The FOSTER portal is an e-learning platform that brings together the best training resources addressed to those who need to know more about Open Science, or need to develop strategies and skills for implementing Open Science practices in their daily workflows. Here you will find a growing collection of training materials. Many different users - from early-career researchers, to data managers, librarians, research administrators, and graduate schools - can benefit from the portal. In order to meet their needs, the existing materials will be extended from basic to more advanced-level resources. In addition, discipline-specific resources will be created.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Full Course
Provider:
FOSTER Open Science
Author:
FOSTER Open Science
Date Added:
08/07/2020
Genomics Workshop Overview
Unrestricted Use
CC BY
Rating
0.0 stars

Workshop overview for the Data Carpentry genomics curriculum. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. This workshop teaches data management and analysis for genomics research including: best practices for organization of bioinformatics projects and data, use of command-line utilities, use of command-line tools to analyze sequence quality and perform variant calling, and connecting to and using cloud computing. This workshop is designed to be taught over two full days of instruction. Please note that workshop materials for working with Genomics data in R are in “alpha” development. These lessons are available for review and for informal teaching experiences, but are not yet part of The Carpentries’ official lesson offerings. Interested in teaching these materials? We have an onboarding video and accompanying slides available to prepare Instructors to teach these lessons. After watching this video, please contact team@carpentries.org so that we can record your status as an onboarded Instructor. Instructors who have completed onboarding will be given priority status for teaching at centrally-organized Data Carpentry Genomics workshops.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Amanda Charbonneau
Erin Alison Becker
François Michonneau
Jason Williams
Maneesha Sane
Matthew Kweskin
Muhammad Zohaib Anwar
Murray Cadzow
Paula Andrea Martinez
Taylor Reiter
Tracy Teal
Date Added:
08/07/2020
Geospatial Workshop Overview
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. Interested in teaching these materials? We have an onboarding video available to prepare Instructors to teach these lessons. After watching this video, please contact team@carpentries.org so that we can record your status as an onboarded Instructor. Instructors who have completed onboarding will be given priority status for teaching at centrally-organized Data Carpentry Geospatial workshops.

Subject:
Applied Science
Geology
Information Science
Mathematics
Measurement and Data
Physical Geography
Physical Science
Social Science
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Arthur Endsley
Chris Prener
Jeff Hollister
Joseph Stachelek
Leah Wasser
Michael Sumner
Michele Tobias
Stace Maples
Date Added:
08/07/2020
How to Use OSF as an Electronic Lab Notebook
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar outlines how to use the free Open Science Framework (OSF) as an Electronic Lab Notebook for personal work or private collaborations. Fundamental features we cover include how to record daily activity, how to store images or arbitrary data files, how to invite collaborators, how to view old versions of files, and how to connect all this usage to more complex structures that support the full work of a lab across multiple projects and experiments.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Image Processing with Python
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson shows how to use Python and skimage to do basic image processing. With support from an NSF iUSE grant, Dr. Tessa Durham Brooks and Dr. Mark Meysenburg at Doane College, Nebraska, USA have developed a curriculum for teaching image processing in Python. This lesson is currently being piloted at different institutions. This pilot phase will be followed by a clean-up phase to incorporate suggestions and feedback from the pilots into the lessons and to make the lessons teachable by the broader community. Development for these lessons has been supported by a grant from the Sloan Foundation.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Mark Meysenberg
Date Added:
08/07/2020
Introduction to Cloud Computing for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn how to work with Amazon AWS cloud computing and how to transfer data between your local computer and cloud resources. The cloud is a fancy name for the huge network of computers that host your favorite websites, stream movies, and shop online, but you can also harness all of that computing power for running analyses that would take days, weeks or even years on your local computer. In this lesson, you’ll learn about renting cloud services that fit your analytic needs, and how to interact with one of those services (AWS) via the command line.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Abigail Cabunoc Mayes
Adina Howe
Amanda Charbonneau
Bob Freeman
Brittany N. Lasseigne, PhD
Bérénice Batut
Caryn Johansen
Chris Fields
Darya Vanichkina
David Mawdsley
Erin Becker
François Michonneau
Greg Wilson
Jason Williams
Joseph Stachelek
Kari L. Jordan, PhD
Katrin Leinweber
Maxim Belkin
Michael R. Crusoe
Piotr Banaszkiewicz
Raniere Silva
Renato Alves
Rémi Emonet
Stephen Turner
Taylor Reiter
Thomas Morrell
Tracy Teal
William L. Close
ammatsun
vuw-ecs-kevin
Date Added:
03/28/2017
Introduction to Geospatial Concepts
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to understand data structures and common storage and transfer formats for spatial data. The goal of this lesson is to provide an introduction to core geospatial data concepts. It is intended for learners who have no prior experience working with geospatial data, and as a pre-requisite for the R for Raster and Vector Data lesson . This lesson can be taught in approximately 75 minutes and covers the following topics: Introduction to raster and vector data format and attributes Examples of data types commonly stored in raster vs vector format Introduction to categorical vs continuous raster data and multi-layer rasters Introduction to the file types and R packages used in the remainder of this workshop Introduction to coordinate reference systems and the PROJ4 format Overview of commonly used programs and applications for working with geospatial data The Introduction to R for Geospatial Data lesson provides an introduction to the R programming language while the R for Raster and Vector Data lesson provides a more in-depth introduction to visualization (focusing on geospatial data), and working with data structures unique to geospatial data. The R for Raster and Vector Data lesson assumes that learners are already familiar with both geospatial data concepts and the core concepts of the R language.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Chris Prener
Dev Paudel
Ethan P White
Joseph Stachelek
Katrin Leinweber
Lauren O'Brien
Michael Koontz
Paul Miller
Tracy Teal
Whalen
Date Added:
08/07/2020
Introduction to Geospatial Raster and Vector Data with R
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to open, work with, and plot vector and raster-format spatial data in R. The episodes in this lesson cover how to open, work with, and plot vector and raster-format spatial data in R. Additional topics include working with spatial metadata (extent and coordinate reference systems), reprojecting spatial data, and working with raster time series data.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ana Costa Conrado
Angela Li
Anne Fouilloux
Brett Lord-Castillo
Ethan P White
Joseph Stachelek
Juan F Fung
Katrin Leinweber
Klaus Schliep
Kristina Riemer
Lachlan Deer
Lauren O'Brien
Marchand
Punam Amratia
Sergio Marconi
Stéphane Guillou
Tracy Teal
zenobieg
Date Added:
08/07/2020
Introduction to Preprints
Unrestricted Use
CC BY
Rating
0.0 stars

This is a recording of a 45 minute introductory webinar on preprints. With our guest speaker Philip Cohen, we’ll cover what preprints/postprints are, the benefits of preprints, and address some common concerns researcher may have. We’ll show how to determine whether you can post preprints/postprints, and also demonstrate how to use OSF preprints (https://osf.io/preprints/) to share preprints. The OSF is the flagship product of the Center for Open Science, a non-profit technology start-up dedicated to improving the alignment between scientific values and scientific practices. Learn more at cos.io and osf.io, or email contact@cos.io.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
An Introduction to Registered Reports for the Research Funder Community
Unrestricted Use
CC BY
Rating
0.0 stars

In this webinar, Doctors David Mellor (Center for Open Science) and Stavroula Kousta (Nature Human Behavior) discuss the Registered Reports publishing workflow and the benefits it may bring to funders of research. Dr. Mellor details the workflow and what it is intended to do, and Dr. Kousta discusses the lessons learned at Nature Human Behavior from their efforts to implement Registered Reports as a journal.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Introduction to R for Geospatial Data
Unrestricted Use
CC BY
Rating
0.0 stars

The goal of this lesson is to provide an introduction to R for learners working with geospatial data. It is intended as a pre-requisite for the R for Raster and Vector Data lesson for learners who have no prior experience using R. This lesson can be taught in approximately 4 hours and covers the following topics: Working with R in the RStudio GUI Project management and file organization Importing data into R Introduction to R’s core data types and data structures Manipulation of data frames (tabular data) in R Introduction to visualization Writing data to a file The the R for Raster and Vector Data lesson provides a more in-depth introduction to visualization (focusing on geospatial data), and working with data structures unique to geospatial data.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Chris Prener
Claudia Engel
David Mawdsley
Erin Becker
François Michonneau
Ido Bar
Jeffrey Oliver
Juan Fung
Katrin Leinweber
Kevin Weitemier
Kok Ben Toh
Lachlan Deer
Marieke Frassl
Matt Clark
Miles McBain
Naupaka Zimmerman
Paula Andrea Martinez
Preethy Nair
Raniere Silva
Rayna Harris
Richard McCosh
Vicken Hillis
butterflyskip
Date Added:
08/07/2020
Introduction to the Command Line for Economics
Unrestricted Use
CC BY
Rating
0.0 stars

Command line interface (OS shell) and graphic user interface (GUI) are different ways of interacting with a computer’s operating system. The shell is a program that presents a command line interface which allows you to control your computer using commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard combination. There are quite a few reasons to start learning about the shell: The shell gives you power. The command line gives you the power to do your work more efficiently and more quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative. To use remote computers or cloud computing, you need to use the shell.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Andras Vereckei
Arieda Muço
Miklós Koren
Date Added:
08/07/2020
Introduction to the Command Line for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn to navigate your file system, create, copy, move, and remove files and directories, and automate repetitive tasks using scripts and wildcards with genomics data. Command line interface (OS shell) and graphic user interface (GUI) are different ways of interacting with a computer’s operating system. The shell is a program that presents a command line interface which allows you to control your computer using commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard combination. There are quite a few reasons to start learning about the shell: For most bioinformatics tools, you have to use the shell. There is no graphical interface. If you want to work in metagenomics or genomics you’re going to need to use the shell. The shell gives you power. The command line gives you the power to do your work more efficiently and more quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative. To use remote computers or cloud computing, you need to use the shell.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Amanda Charbonneau
Amy E. Hodge
Anita Schürch
Bastian Greshake Tzovaras
Bérénice Batut
Colin Davenport
Diya Das
Erin Alison Becker
François Michonneau
Giulio Valentino Dalla Riva
Jessica Elizabeth Mizzi
Karen Cranston
Kari L Jordan
Mattias de Hollander
Mike Lee
Niclas Jareborg
Omar Julio Sosa
Rayna Michelle Harris
Ross Cunning
Russell Neches
Sarah Stevens
Shannon EK Joslin
Sheldon John McKay
Siva Chudalayandi
Taylor Reiter
Tobi
Tracy Teal
Tristan De Buysscher
Date Added:
08/07/2020