The veracity of substantive research claims hinges on the way experimental data …
The veracity of substantive research claims hinges on the way experimental data are collected and analyzed. In this article, we discuss an uncomfortable fact that threatens the core of psychology’s academic enterprise: almost without exception, psychologists do not commit themselves to a method of data analysis before they see the actual data. It then becomes tempting to fine tune the analysis to the data in order to obtain a desired result—a procedure that invalidates the interpretation of the common statistical tests. The extent of the fine tuning varies widely across experiments and experimenters but is almost impossible for reviewers and readers to gauge. To remedy the situation, we propose that researchers preregister their studies and indicate in advance the analyses they intend to conduct. Only these analyses deserve the label “confirmatory,” and only for these analyses are the common statistical tests valid. Other analyses can be carried out but these should be labeled “exploratory.” We illustrate our proposal with a confirmatory replication attempt of a study on extrasensory perception.
Scientists should be able to provide support for the absence of a …
Scientists should be able to provide support for the absence of a meaningful effect. Currently, researchers often incorrectly conclude an effect is absent based a nonsignificant result. A widely recommended approach within a frequentist framework is to test for equivalence. In equivalence tests, such as the two one-sided tests (TOST) procedure discussed in this article, an upper and lower equivalence bound is specified based on the smallest effect size of interest. The TOST procedure can be used to statistically reject the presence of effects large enough to be considered worthwhile. This practical primer with accompanying spreadsheet and R package enables psychologists to easily perform equivalence tests (and power analyses) by setting equivalence bounds based on standardized effect sizes and provides recommendations to prespecify equivalence bounds. Extending your statistical tool kit with equivalence tests is an easy way to improve your statistical and theoretical inferences.
In this article, we accomplish two things. First, we show that despite …
In this article, we accomplish two things. First, we show that despite empirical psychologists’ nominal endorsement of a low rate of false-positive findings (≤ .05), flexibility in data collection, analysis, and reporting dramatically increases actual false-positive rates. In many cases, a researcher is more likely to falsely find evidence that an effect exists than to correctly find evidence that it does not. We present computer simulations and a pair of actual experiments that demonstrate how unacceptably easy it is to accumulate (and report) statistically significant evidence for a false hypothesis. Second, we suggest a simple, low-cost, and straightforwardly effective disclosure-based solution to this problem. The solution involves six concrete requirements for authors and four guidelines for reviewers, all of which impose a minimal burden on the publication process.
An academic scientist’s professional success depends on publishing. Publishing norms emphasize novel, …
An academic scientist’s professional success depends on publishing. Publishing norms emphasize novel, positive results. As such, disciplinary incentives encourage design, analysis, and reporting decisions that elicit positive results and ignore negative results. Prior reports demonstrate how these incentives inflate the rate of false effects in published science. When incentives favor novelty over replication, false results persist in the literature unchallenged, reducing efficiency in knowledge accumulation. Previous suggestions to address this problem are unlikely to be effective. For example, a journal of negative results publishes otherwise unpublishable reports. This enshrines the low status of the journal and its content. The persistence of false findings can be meliorated with strategies that make the fundamental but abstract accuracy motive—getting it right—competitive with the more tangible and concrete incentive—getting it published. This article develops strategies for improving scientific practices and knowledge accumulation that account for ordinary human motivations and biases.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.