Updating search results...

Search Resources

18 Results

View
Selected filters:
  • CCSS.Math.Content.HSG-C.A.3 - Construct the inscribed and circumscribed circles of a triangle, and p...
  • CCSS.Math.Content.HSG-C.A.3 - Construct the inscribed and circumscribed circles of a triangle, and p...
Circumcenter of a Triangle
Unrestricted Use
CC BY
Rating
0.0 stars

This task shows that the three perpendicular bisectors of the sides of a triangle all meet in a point, using the characterization of the perpendicular bisector of a line segment as the set of points equidistant from the two ends of the segment. The point so constructed is called the circumcenter of the triangle.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
03/04/2013
Circumcircle of a Regular Polygon
Read the Fine Print
Rating
0.0 stars

An interactive applet and associated web page that show the properties of a circumcircle of a polygon. The applet shows a regular polygon where the user can drag the vertices to reshape it and alter the number of sides. As the polygon is being varied, the circumcircle is shown, passing through all vertices. The text describes two ways to calculate the radius of the circumcircle, depending on what you are given to start. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Author:
John Page
Date Added:
02/16/2011
Constructing the Incenter of a triangle
Read the Fine Print
Rating
0.0 stars

An interactive applet and associated web page that provide step-by-step animated instructions on how to construct the incenter of a triangle. The animation can be run either continuously like a video, or single stepped to allow classroom discussion and thought between steps. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

Subject:
Geometry
Mathematics
Material Type:
Reading
Simulation
Provider:
Math Open Reference
Author:
John Page
Date Added:
02/16/2011
G-C Circumscribed Triangles
Unrestricted Use
CC BY
Rating
0.0 stars

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/06/2015
Geometry Module 5: Circles With and Without Coordinates
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year.  It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story.  This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Geometry
Mathematics
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
04/15/2016
Geometry Problems: Circles and Triangles
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to use geometric properties to solve problems. In particular, the lesson will help you identify and help students who have the following difficulties: solving problems by determining the lengths of the sides in right triangles; and finding the measurements of shapes by decomposing complex shapes into simpler ones. The lesson unit will also help students to recognize that there may be different approaches to geometrical problems, and to understand the relative strengths and weaknesses of those approaches.

Subject:
Geometry
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Inscribing a Circle in a Triangle I
Unrestricted Use
CC BY
Rating
0.0 stars

This task shows how to inscribe a circle in a triangle using angle bisectors. A companion task, ``Inscribing a circle in a triangle II'' stresses the auxiliary remarkable fact that comes out of this task, namely that the three angle bisectors of triangle ABC all meet in the point O.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Inscribing a Triangle in a Circle
Unrestricted Use
CC BY
Rating
0.0 stars

This problem introduces the circumcenter of a triangle and shows how it can be used to inscribe the triangle in a circle. It also shows that there cannot be more than one circumcenter.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Inscribing a circle in a Triangle II
Unrestricted Use
CC BY
Rating
0.0 stars

This task focuses on a remarkable fact which comes out of the construction of the inscribed circle in a triangle: the angle bisectors of the three angles of triangle ABC all meet in a point.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Inscribing and Circumscribing Right Triangles
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to use geometric properties to solve problems. In particular, it will help you identify and help students who have difficulty: decomposing complex shapes into simpler ones in order to solve a problem; bringing together several geometric concepts to solve a problem; and finding the relationship between radii of inscribed and circumscribed circles of right triangles.

Subject:
Geometry
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Locating Warehouse
Unrestricted Use
CC BY
Rating
0.0 stars

This task can be implemented in a variety of ways. For a class with previous exposure to the incenter or angle bisectors, part (a) could be a quick exercise in geometric constructions,. Alternatively, this could be part of a full introduction to angle bisectors, culminating in a full proof that the three angle bisectors are concurrent, an essentially complete proof of which is found in the solution below.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Módulo de geometría 5: círculos con y sin coordenadas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

Este módulo reúne las ideas de similitud y congruencia y las propiedades de la longitud, el área y las construcciones geométricas estudiadas durante todo el año. También incluye las propiedades específicas de los triángulos, cuadriláteros especiales, líneas paralelas y transversales, y movimientos rígidos establecidos y construidos sobre esta historia matemática. El enfoque de este módulo está en las posibles relaciones geométricas entre un par de líneas de intersección y un círculo dibujado en la página.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year.  It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story.  This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Geometry
Mathematics
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
04/15/2016
Placing a Fire Hydrant
Unrestricted Use
CC BY
Rating
0.0 stars

This task can be implemented in a variety of ways. For a class with previous exposure to properties of perpendicular bisectors, part (a) could be a quick exercise in geometric constructions, and an application of the result. Alternatively, this could be part of an introduction to perpendicular bisectors, culminating in a full proof that the three perpendicular bisectors are concurrent at the circumcenter of the triangle, an essentially complete proof of which is found in the solution below.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Sectors of Circles
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to solve problems involving area and arc length of a sector of a circle using radians. It assumes familiarity with radians and should not be treated as an introduction to the topic. This lesson is intended to help teachers identify and assist students who have difficulties in: Computing perimeters, areas, and arc lengths of sectors using formulas and finding the relationships between arc lengths, and areas of sectors after scaling.

Subject:
Geometry
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Seven Circles II
Unrestricted Use
CC BY
Rating
0.0 stars

This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/20/2012
Two Wheels and a Belt
Unrestricted Use
CC BY
Rating
0.0 stars

This task combines two skills from domain G-C: making use of the relationship between a tangent segment to a circle and the radius touching that tangent segment (G-C.2), and computing lengths of circular arcs given the radii and central angles (G-C.5). It also requires students to create additional structure within the given problem, producing and solving a right triangle to compute the required central angles (G-SRT.8).

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012