In this activity, students will practice describing appearances to each other. Students …
In this activity, students will practice describing appearances to each other. Students will play a virtual fashion show for their warm-up before moving on to a game of "Guess Who" with a partner.
This remote learning lab manual was created to guide students in 200-level …
This remote learning lab manual was created to guide students in 200-level introductory/general physics courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:
Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.
The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students’ attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart). Students gain experience with well established physics concepts by applying them to create models used to make predictions. The need for assumptions in creating a model is explicitly addressed and students are asked to think critically about the affect of various assumptions on the validity of models in different situations. As in research science, experimental data are analyzed in order to produce results for comparison to prediction. Students are asked to think critically about differences between predictions and results in the context of model assumptions and measurement uncertainty
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.