In this module, students prepare and run an agarose gel that they use to separate DNA molecules of various sizes. Students stain the gels with ethidium bromide to visualize the positions of DNA molecules. Students estimate the sizes of separated DNA molecules by their migration distances relative to those of molecular weight standards. This module is part of a semester-long introductory lab class, Investigations in Molecular Cell Biology, at Boston College.
2 Results
The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include protein expression, purification, and gel analysis, PCR, site-directed mutagenesis, kinase activity assays, and protein structure viewing.
This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format.
Acknowledgments
Development of this course was funded through an HHMI Professors grant to Professor Catherine L. Drennan.
- Subject:
- Biology
- Life Science
- Material Type:
- Full Course
- Provider Set:
- MIT OpenCourseWare
- Author:
- Taylor, Elizabeth
- Date Added:
- 02/01/2009