Updating search results...

Search Resources

5 Results

View
Selected filters:
Data Analysis and Visualization in R for Ecologists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson from Ecology curriculum to learn how to analyse and visualise ecological data in R. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with ecology data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from R.

Subject:
Applied Science
Computer Science
Ecology
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ankenbrand, Markus
Arindam Basu
Ashander, Jaime
Bahlai, Christie
Bailey, Alistair
Becker, Erin Alison
Bledsoe, Ellen
Boehm, Fred
Bolker, Ben
Bouquin, Daina
Burge, Olivia Rata
Burle, Marie-Helene
Carchedi, Nick
Chatzidimitriou, Kyriakos
Chiapello, Marco
Conrado, Ana Costa
Cortijo, Sandra
Cranston, Karen
Cuesta, Sergio Martínez
Culshaw-Maurer, Michael
Czapanskiy, Max
Daijiang Li
Dashnow, Harriet
Daskalova, Gergana
Deer, Lachlan
Direk, Kenan
Dunic, Jillian
Elahi, Robin
Fishman, Dmytro
Fouilloux, Anne
Fournier, Auriel
Gan, Emilia
Goswami, Shubhang
Guillou, Stéphane
Hancock, Stacey
Hardenberg, Achaz Von
Harrison, Paul
Hart, Ted
Herr, Joshua R.
Hertweck, Kate
Hodges, Toby
Hulshof, Catherine
Humburg, Peter
Jean, Martin
Johnson, Carolina
Johnson, Kayla
Johnston, Myfanwy
Jordan, Kari L
K. A. S. Mislan
Kaupp, Jake
Keane, Jonathan
Kerchner, Dan
Klinges, David
Koontz, Michael
Leinweber, Katrin
Lepore, Mauro Luciano
Li, Ye
Lijnzaad, Philip
Lotterhos, Katie
Mannheimer, Sara
Marwick, Ben
Michonneau, François
Millar, Justin
Moreno, Melissa
Najko Jahn
Obeng, Adam
Odom, Gabriel J.
Pauloo, Richard
Pawlik, Aleksandra Natalia
Pearse, Will
Peck, Kayla
Pederson, Steve
Peek, Ryan
Pletzer, Alex
Quinn, Danielle
Rajeg, Gede Primahadi Wijaya
Reiter, Taylor
Rodriguez-Sanchez, Francisco
Sandmann, Thomas
Seok, Brian
Sfn_brt
Shiklomanov, Alexey
Shivshankar Umashankar
Stachelek, Joseph
Strauss, Eli
Sumedh
Switzer, Callin
Tarkowski, Leszek
Tavares, Hugo
Teal, Tracy
Theobold, Allison
Tirok, Katrin
Tylén, Kristian
Vanichkina, Darya
Voter, Carolyn
Webster, Tara
Weisner, Michael
White, Ethan P
Wilson, Earle
Woo, Kara
Wright, April
Yanco, Scott
Ye, Hao
Date Added:
03/20/2017
Databases and SQL
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lesson that teaches how to use databases and SQL In the late 1920s and early 1930s, William Dyer, Frank Pabodie, and Valentina Roerich led expeditions to the Pole of Inaccessibility in the South Pacific, and then onward to Antarctica. Two years ago, their expeditions were found in a storage locker at Miskatonic University. We have scanned and OCR the data they contain, and we now want to store that information in a way that will make search and analysis easy. Three common options for storage are text files, spreadsheets, and databases. Text files are easiest to create, and work well with version control, but then we would have to build search and analysis tools ourselves. Spreadsheets are good for doing simple analyses, but they don’t handle large or complex data sets well. Databases, however, include powerful tools for search and analysis, and can handle large, complex data sets. These lessons will show how to use a database to explore the expeditions’ data.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Amy Brown
Andrew Boughton
Andrew Kubiak
Avishek Kumar
Ben Waugh
Bill Mills
Brian Ballsun-Stanton
Chris Tomlinson
Colleen Fallaw
Dan Michael Heggø
Daniel Suess
Dave Welch
David W Wright
Deborah Gertrude Digges
Donny Winston
Doug Latornell
Erin Alison Becker
Ethan Nelson
Ethan P White
François Michonneau
George Graham
Gerard Capes
Gideon Juve
Greg Wilson
Ioan Vancea
Jake Lever
James Mickley
John Blischak
JohnRMoreau@gmail.com
Jonah Duckles
Jonathan Guyer
Joshua Nahum
Kate Hertweck
Kevin Dyke
Louis Vernon
Luc Small
Luke William Johnston
Maneesha Sane
Mark Stacy
Matthew Collins
Matty Jones
Mike Jackson
Morgan Taschuk
Patrick McCann
Paula Andrea Martinez
Pauline Barmby
Piotr Banaszkiewicz
Raniere Silva
Ray Bell
Rayna Michelle Harris
Rémi Emonet
Rémi Rampin
Seda Arat
Sheldon John McKay
Sheldon McKay
Stephen Davison
Thomas Guignard
Trevor Bekolay
lorra
slimlime
Date Added:
03/20/2017
Introduction to Geospatial Concepts
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to understand data structures and common storage and transfer formats for spatial data. The goal of this lesson is to provide an introduction to core geospatial data concepts. It is intended for learners who have no prior experience working with geospatial data, and as a pre-requisite for the R for Raster and Vector Data lesson . This lesson can be taught in approximately 75 minutes and covers the following topics: Introduction to raster and vector data format and attributes Examples of data types commonly stored in raster vs vector format Introduction to categorical vs continuous raster data and multi-layer rasters Introduction to the file types and R packages used in the remainder of this workshop Introduction to coordinate reference systems and the PROJ4 format Overview of commonly used programs and applications for working with geospatial data The Introduction to R for Geospatial Data lesson provides an introduction to the R programming language while the R for Raster and Vector Data lesson provides a more in-depth introduction to visualization (focusing on geospatial data), and working with data structures unique to geospatial data. The R for Raster and Vector Data lesson assumes that learners are already familiar with both geospatial data concepts and the core concepts of the R language.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Chris Prener
Dev Paudel
Ethan P White
Joseph Stachelek
Katrin Leinweber
Lauren O'Brien
Michael Koontz
Paul Miller
Tracy Teal
Whalen
Date Added:
08/07/2020
Introduction to Geospatial Raster and Vector Data with R
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to open, work with, and plot vector and raster-format spatial data in R. The episodes in this lesson cover how to open, work with, and plot vector and raster-format spatial data in R. Additional topics include working with spatial metadata (extent and coordinate reference systems), reprojecting spatial data, and working with raster time series data.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ana Costa Conrado
Angela Li
Anne Fouilloux
Brett Lord-Castillo
Ethan P White
Joseph Stachelek
Juan F Fung
Katrin Leinweber
Klaus Schliep
Kristina Riemer
Lachlan Deer
Lauren O'Brien
Marchand
Punam Amratia
Sergio Marconi
Stéphane Guillou
Tracy Teal
zenobieg
Date Added:
08/07/2020
The Unix Shell
Unrestricted Use
CC BY
Rating
0.0 stars

Software Carpentry lesson on how to use the shell to navigate the filesystem and write simple loops and scripts. The Unix shell has been around longer than most of its users have been alive. It has survived so long because it’s a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so they aren’t typing the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including “high-performance computing” supercomputers). These lessons will start you on a path towards using these resources effectively.

Subject:
Applied Science
Computer Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Adam James Orr
Adam Richie-Halford
AidaMirsalehi
Alex Kassil
Alex Mac
Alexander Konovalov
Alexander Morley
Alix Keener
Amy Brown
Andrea Bedini
Andrew Boughton
Andrew Reid
Andrew T. T. McRae
Andrew Walker
Ariel Rokem
Armin Sobhani
Ashwin Srinath
Bagus Tris Atmaja
Bartosz Telenczuk
Ben Bolker
Benjamin Gabriel
Bertie Seyffert
Bill Mills
Brian Ballsun-Stanton
BrianBill
Camille Marini
Chris Mentzel
Christina Koch
Colin Morris
Colin Sauze
Damien Irving
Dan Jones
Dana Brunson
Daniel Baird
Daniel McCloy
Daniel Standage
Danielle M. Nielsen
Dave Bridges
David Eyers
David McKain
David Vollmer
Dean Attali
Devinsuit
Dmytro Lituiev
Donny Winston
Doug Latornell
Dustin Lang
Elena Denisenko
Emily Dolson
Emily Jane McTavish
Eric Jankowski
Erin Alison Becker
Ethan P White
Evgenij Belikov
Farah Shamma
Fatma Deniz
Filipe Fernandes
Francis Gacenga
François Michonneau
Gabriel A. Devenyi
Gerard Capes
Giuseppe Profiti
Greg Wilson
Halle Burns
Hannah Burkhardt
Harriet Alexander
Hugues Fontenelle
Ian van der Linde
Inigo Aldazabal Mensa
Jackie Milhans
Jake Cowper Szamosi
James Guelfi
Jan T. Kim
Jarek Bryk
Jarno Rantaharju
Jason Macklin
Jay van Schyndel
Jens vdL
John Blischak
John Pellman
John Simpson
Jonah Duckles
Jonny Williams
Joshua Madin
Kai Blin
Kathy Chung
Katrin Leinweber
Kevin M. Buckley
Kirill Palamartchouk
Klemens Noga
Kristopher Keipert
Kunal Marwaha
Laurence
Lee Zamparo
Lex Nederbragt
M Carlise
Mahdi Sadjadi
Marc Rajeev Gouw
Marcel Stimberg
Maria Doyle
Marie-Helene Burle
Marisa Lim
Mark Mandel
Martha Robinson
Martin Feller
Matthew Gidden
Matthew Peterson
Megan Fritz
Michael Zingale
Mike Henry
Mike Jackson
Morgan Oneka
Murray Hoggett
Nicola Soranzo
Nicolas Barral
Noah D Brenowitz
Noam Ross
Norman Gray
Orion Buske
Owen Kaluza
Patrick McCann
Paul Gardner
Pauline Barmby
Peter R. Hoyt
Peter Steinbach
Philip Lijnzaad
Phillip Doehle
Piotr Banaszkiewicz
Rafi Ullah
Raniere Silva
Robert A Beagrie
Ruud Steltenpool
Ry4an Brase
Rémi Emonet
Sarah Mount
Sarah Simpkin
Scott Ritchie
Stephan Schmeing
Stephen Jones
Stephen Turner
Steve Leak
Stéphane Guillou
Susan Miller
Thomas Mellan
Tim Keighley
Tobin Magle
Tom Dowrick
Trevor Bekolay
Varda F. Hagh
Victor Koppejan
Vikram Chhatre
Yee Mey
csqrs
earkpr
ekaterinailin
nther
reshama shaikh
s-boardman
sjnair
Date Added:
03/20/2017