Updating search results...

Search Resources

2 Results

View
Selected filters:
Averages: Still Flawed
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video continues the theme of an early BLOSSOMS lesson, Flaws of Averages, using new examples—including how all the children from Lake Wobegon can be above average, as well as the Friendship Paradox. As mentioned in the original module, averages are often worthwhile representations of a set of data by a single descriptive number. The objective of this module, once again, is to simply point out a few pitfalls that could arise if one is not attentive to details when calculating and interpreting averages. Most students at any level in high school can understand the concept of the flaws of averages presented here. The essential prerequisite knowledge for this video lesson is the ability to calculate an average from a set of numbers. Materials needed include: pen and paper for the students; a blackboard or equivalent; and coins (one per student) or something similar that students can repeatedly use to create a random event with equal chances of the two outcomes (e.g. flipping a fair coin). The coins or something similar are recommended for one of the classroom activities, which will demonstrate the idea of regression toward the mean. Another activity will have the students create groups to show how the average number of friends of friends is greater than or equal to the average number of friends in a group, which is known as The Friendship Paradox. The lesson is designed for a typical 50-minute class session.

Subject:
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Dan Livengood, Rhonda Jordan
Date Added:
02/13/2015
The Flaws of Averages
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video presents an introduction to the Flaws of Averages using three exciting examples: the ''crossing of the river'' example, the ''cookie'' example, and the ''dance class'' example. Averages are often worthwhile representations of a set of data by a single descriptive number. The objective of this module, however, is to simply point out a few pitfalls that could arise if one is not attentive to details when calculating and interpreting averages. The essential prerequisite knowledge for this video lesson is the ability to calculate an average from a set of numbers. During this video lesson, students will learn about three flaws of averages: (1) The average is not always a good description of the actual situation, (2) The function of the average is not always the same as the average of the function, and (3) The average depends on your perspective. To convey these concepts, the students are presented with the three real world examples mentioned above.

Subject:
Education
Mathematics
Numbers and Operations
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Daniel Livengood
MIT BLOSSOMS
Rhonda Jordan
Date Added:
06/02/2012