Updating search results...

Search Resources

7 Results

View
Selected filters:
Introduction to R for Geospatial Data
Unrestricted Use
CC BY
Rating
0.0 stars

The goal of this lesson is to provide an introduction to R for learners working with geospatial data. It is intended as a pre-requisite for the R for Raster and Vector Data lesson for learners who have no prior experience using R. This lesson can be taught in approximately 4 hours and covers the following topics: Working with R in the RStudio GUI Project management and file organization Importing data into R Introduction to R’s core data types and data structures Manipulation of data frames (tabular data) in R Introduction to visualization Writing data to a file The the R for Raster and Vector Data lesson provides a more in-depth introduction to visualization (focusing on geospatial data), and working with data structures unique to geospatial data.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Chris Prener
Claudia Engel
David Mawdsley
Erin Becker
François Michonneau
Ido Bar
Jeffrey Oliver
Juan Fung
Katrin Leinweber
Kevin Weitemier
Kok Ben Toh
Lachlan Deer
Marieke Frassl
Matt Clark
Miles McBain
Naupaka Zimmerman
Paula Andrea Martinez
Preethy Nair
Raniere Silva
Rayna Harris
Richard McCosh
Vicken Hillis
butterflyskip
Date Added:
08/07/2020
Intro to R and RStudio for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Welcome to R! Working with a programming language (especially if it’s your first time) often feels intimidating, but the rewards outweigh any frustrations. An important secret of coding is that even experienced programmers find it difficult and frustrating at times – so if even the best feel that way, why let intimidation stop you? Given time and practice* you will soon find it easier and easier to accomplish what you want. Why learn to code? Bioinformatics – like biology – is messy. Different organisms, different systems, different conditions, all behave differently. Experiments at the bench require a variety of approaches – from tested protocols to trial-and-error. Bioinformatics is also an experimental science, otherwise we could use the same software and same parameters for every genome assembly. Learning to code opens up the full possibilities of computing, especially given that most bioinformatics tools exist only at the command line. Think of it this way: if you could only do molecular biology using a kit, you could probably accomplish a fair amount. However, if you don’t understand the biochemistry of the kit, how would you troubleshoot? How would you do experiments for which there are no kits? R is one of the most widely-used and powerful programming languages in bioinformatics. R especially shines where a variety of statistical tools are required (e.g. RNA-Seq, population genomics, etc.) and in the generation of publication-quality graphs and figures. Rather than get into an R vs. Python debate (both are useful), keep in mind that many of the concepts you will learn apply to Python and other programming languages. Finally, we won’t lie; R is not the easiest-to-learn programming language ever created. So, don’t get discouraged! The truth is that even with the modest amount of R we will cover today, you can start using some sophisticated R software packages, and have a general sense of how to interpret an R script. Get through these lessons, and you are on your way to being an accomplished R user! * We very intentionally used the word practice. One of the other “secrets” of programming is that you can only learn so much by reading about it. Do the exercises in class, re-do them on your own, and then work on your own problems.

Subject:
Applied Science
Biology
Computer Science
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ahmed Moustafa
Alexia Cardona
Andrea Ortiz
Jason Williams
Krzysztof Poterlowicz
Naupaka Zimmerman
Yuka Takemon
Date Added:
08/07/2020
Library Carpentry: OpenRefine
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: an introduction to OpenRefine for Librarians This Library Carpentry lesson introduces people working in library- and information-related roles to working with data in OpenRefine. At the conclusion of the lesson you will understand what the OpenRefine software does and how to use the OpenRefine software to work with data files.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander Mendes
Anna Neatrour
Antonin Delpeuch
Betty Rozum
Christina Koch
Christopher Erdmann
Daniel Bangert
Elizabeth Lisa McAulay
Evan Williamson
Jamene Brooks-Kieffer
James Baker
Jamie Jamison
Jeffrey Oliver
Katherine Koziar
Naupaka Zimmerman
Paul R. Pival
Rémi Emonet
Tim Dennis
Tom Honeyman
Tracy Teal
andreamcastillo
dnesdill
hauschke
mhidas
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Literate Programming
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Ciera Martinez
Courtney Soderberg
Hilmar Lapp
Jennifer Bryan
Kristina Riemer
Naupaka Zimmerman
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Organization
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Ciera Martinez
Courtney Soderberg
Hilmar Lapp
Jennifer Bryan
Kristina Riemer
Naupaka Zimmerman
Date Added:
08/07/2020
R for Reproducible Scientific Analysis
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson in part of Software Carpentry workshop and teach novice programmers to write modular code and best practices for using R for data analysis. an introduction to R for non-programmers using gapminder data The goal of this lesson is to teach novice programmers to write modular code and best practices for using R for data analysis. R is commonly used in many scientific disciplines for statistical analysis and its array of third-party packages. We find that many scientists who come to Software Carpentry workshops use R and want to learn more. The emphasis of these materials is to give attendees a strong foundation in the fundamentals of R, and to teach best practices for scientific computing: breaking down analyses into modular units, task automation, and encapsulation. Note that this workshop will focus on teaching the fundamentals of the programming language R, and will not teach statistical analysis. The lesson contains more material than can be taught in a day. The instructor notes page has some suggested lesson plans suitable for a one or half day workshop. A variety of third party packages are used throughout this workshop. These are not necessarily the best, nor are they comprehensive, but they are packages we find useful, and have been chosen primarily for their usability.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam H. Sparks
Ahsan Ali Khoja
Amy Lee
Ana Costa Conrado
Andrew Boughton
Andrew Lonsdale
Andrew MacDonald
Andris Jankevics
Andy Teucher
Antonio Berlanga-Taylor
Ashwin Srinath
Ben Bolker
Bill Mills
Bret Beheim
Clare Sloggett
Daniel
Dave Bridges
David J. Harris
David Mawdsley
Dean Attali
Diego Rabatone Oliveira
Drew Tyre
Elise Morrison
Erin Alison Becker
Fernando Mayer
François Michonneau
Giulio Valentino Dalla Riva
Gordon McDonald
Greg Wilson
Harriet Dashnow
Ido Bar
Jaime Ashander
James Balamuta
James Mickley
Jamie McDevitt-Irwin
Jeffrey Arnold
Jeffrey Oliver
John Blischak
Jonah Duckles
Josh Quan
Julia Piaskowski
Kara Woo
Kate Hertweck
Katherine Koziar
Katrin Leinweber
Kellie Ottoboni
Kevin Weitemier
Kiana Ashley West
Kieran Samuk
Kunal Marwaha
Kyriakos Chatzidimitriou
Lachlan Deer
Lex Nederbragt
Liz Ing-Simmons
Lucy Chang
Luke W Johnston
Luke Zappia
Marc Sze
Marie-Helene Burle
Marieke Frassl
Mark Dunning
Martin John Hadley
Mary Donovan
Matt Clark
Melissa Kardish
Mike Jackson
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Nelly Sélem
Nicholas Lesniak
Nicholas Potter
Nima Hejazi
Nora Mitchell
Olivia Rata Burge
Paula Andrea Martinez
Pete Bachant
Phil Bouchet
Philipp Boersch-Supan
Piotr Banaszkiewicz
Raniere Silva
Rayna Michelle Harris
Remi Daigle
Research Bazaar
Richard Barnes
Robert Bagchi
Rémi Emonet
Sam Penrose
Sandra Brosda
Sarah Munro
Sasha Lavrentovich
Scott Allen Funkhouser
Scott Ritchie
Sebastien Renaut
Thea Van Rossum
Timothy Eoin Moore
Timothy Rice
Tobin Magle
Trevor Bekolay
Tyler Crawford Kelly
Vicken Hillis
Yuka Takemon
bippuspm
butterflyskip
waiteb5
Date Added:
03/20/2017
R para Análisis Científicos Reproducibles
Unrestricted Use
CC BY
Rating
0.0 stars

Una introducción a R utilizando los datos de Gapminder. El objetivo de esta lección es enseñar a las programadoras principiantes a escribir códigos modulares y adoptar buenas prácticas en el uso de R para el análisis de datos. R nos provee un conjunto de paquetes desarrollados por terceros que se usan comúnmente en diversas disciplinas científicas para el análisis estadístico. Encontramos que muchos científicos que asisten a los talleres de Software Carpentry utilizan R y quieren aprender más. Nuestros materiales son relevantes ya que proporcionan a los asistentes una base sólida en los fundamentos de R y enseñan las mejores prácticas del cómputo científico: desglose del análisis en módulos, automatización tareas y encapsulamiento. Ten en cuenta que este taller se enfoca en los fundamentos del lenguaje de programación R y no en el análisis estadístico. A lo largo de este taller se utilizan una variedad de paquetes desarrolados por terceros, los cuales no son necesariamente los mejores ni se encuentran explicadas todas sus funcionalidades, pero son paquetes que consideramos útiles y han sido elegidos principalmente por su facilidad de uso.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
A. s
Alejandra Gonzalez-Beltran
Ana Beatriz Villaseñor Altamirano
Antonio
AntonioJBT
Belinda Weaver
Claudia Engel
Cynthia Monastirsky
Daniel Beiter
David Mawdsley
David Pérez-Suárez
Erin Becker
EuniceML
François Michonneau
Gordon McDonald
Guillermina Actis
Guillermo Movia
Hely Salgado
Ido Bar
Ivan Ogasawara
Ivonne Lujano
James J Balamuta
Jamie McDevitt-Irwin
Jeff Oliver
Jonah Duckles
Juan M. Barrios
Katrin Leinweber
Kevin Alquicira
Kevin Martínez-Folgar
Laura Angelone
Laura-Gomez
Leticia Vega
Marcela Alfaro Córdoba
Marceline Abadeer
Maria Florencia D'Andrea
Marie-Helene Burle
Marieke Frassl
Matias Andina
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Paola Prieto
Paula Andrea Martinez
Raniere Silva
Rayna M Harris
Richard Barnes
Richard McCosh
Romualdo Zayas-Lagunas
Sandra Brosda
Sasha Lavrentovich
Shirley Alquicira Hernandez
Silvana Pereyra
Tobin Magle
Veronica Jimenez
juli arancio
raynamharris
saynomoregrl
Date Added:
08/07/2020