Updating search results...

Search Resources

7 Results

View
Selected filters:
Análisis y visualización de datos usando Python
Unrestricted Use
CC BY
Rating
0.0 stars

Python es un lenguaje de programación general que es útil para escribir scripts para trabajar con datos de manera efectiva y reproducible. Esta es una introducción a Python diseñada para participantes sin experiencia en programación. Estas lecciones pueden enseñarse en un día (~ 6 horas). Las lecciones empiezan con información básica sobre la sintaxis de Python, la interface de Jupyter Notebook, y continúan con cómo importar archivos CSV, usando el paquete Pandas para trabajar con DataFrames, cómo calcular la información resumen de un DataFrame, y una breve introducción en cómo crear visualizaciones. La última lección demuestra cómo trabajar con bases de datos directamente desde Python. Nota: los datos no han sido traducidos de la versión original en inglés, por lo que los nombres de variables se mantienen en inglés y los números de cada observación usan la sintaxis de habla inglesa (coma separador de miles y punto separador de decimales).

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alejandra Gonzalez-Beltran
April Wright
Christopher Erdmann
Enric Escorsa O'Callaghan
Erin Becker
Fernando Garcia
Hely Salgado
Juan M. Barrios
Juan Martín Barrios
Katrin Leinweber
LUS24
Laura Angelone
Leonardo Ulises Spairani
Maxim Belkin
Miguel González
Nicolás Palopoli
Nohemi Huanca Nunez
Paula Andrea Martinez
Raniere Silva
Rayna Harris
Sarah Brown
Silvana Pereyra
Spencer Harris
Stephan Druskat
Trevor Keller
Wilson Lozano
chekos
monialo2000
rzayas
Date Added:
08/07/2020
Data Analysis and Visualization in Python for Ecologists
Unrestricted Use
CC BY
Rating
0.0 stars

Python is a general purpose programming language that is useful for writing scripts to work effectively and reproducibly with data. This is an introduction to Python designed for participants with no programming experience. These lessons can be taught in one and a half days (~ 10 hours). They start with some basic information about Python syntax, the Jupyter notebook interface, and move through how to import CSV files, using the pandas package to work with data frames, how to calculate summary information from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from Python.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Maxim Belkin
Tania Allard
Date Added:
03/20/2017
Introduction to Cloud Computing for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn how to work with Amazon AWS cloud computing and how to transfer data between your local computer and cloud resources. The cloud is a fancy name for the huge network of computers that host your favorite websites, stream movies, and shop online, but you can also harness all of that computing power for running analyses that would take days, weeks or even years on your local computer. In this lesson, you’ll learn about renting cloud services that fit your analytic needs, and how to interact with one of those services (AWS) via the command line.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Abigail Cabunoc Mayes
Adina Howe
Amanda Charbonneau
Bob Freeman
Brittany N. Lasseigne, PhD
Bérénice Batut
Caryn Johansen
Chris Fields
Darya Vanichkina
David Mawdsley
Erin Becker
François Michonneau
Greg Wilson
Jason Williams
Joseph Stachelek
Kari L. Jordan, PhD
Katrin Leinweber
Maxim Belkin
Michael R. Crusoe
Piotr Banaszkiewicz
Raniere Silva
Renato Alves
Rémi Emonet
Stephen Turner
Taylor Reiter
Thomas Morrell
Tracy Teal
William L. Close
ammatsun
vuw-ecs-kevin
Date Added:
03/28/2017
Library Carpentry: Introduction to Git
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: An introduction to Git. What We Will Try to Do Begin to understand and use Git/GitHub. You will not be an expert by the end of the class. You will probably not even feel very comfortable using Git. This is okay. We want to make a start but, as with any skill, using Git takes practice. Be Excellent to Each Other If you spot someone in the class who is struggling with something and you think you know how to help, please give them a hand. Try not to do the task for them: instead explain the steps they need to take and what these steps will achieve. Be Patient With The Instructor and Yourself This is a big group, with different levels of knowledge, different computer systems. This isn’t your instructor’s full-time job (though if someone wants to pay them to play with computers all day they’d probably accept). They will do their best to make this session useful. This is your session. If you feel we are going too fast, then please put up a pink sticky. We can decide as a group what to cover.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alex Mendes
Alexander Gary Zimmerman
Alexander Mendes
Amiya Maji
Amy Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Belinda Weaver
Benjamin Bolker
Bill McMillin
Brian Moore
Casey Youngflesh
Christoph Junghans
Christopher Erdmann
DSTraining
Dan Michael O. Heggø
David Jennings
Erin Alison Becker
Evan Williamson
Garrett Bachant
Grant Sayer
Ian Lee
Jake Lever
Jamene Brooks-Kieffer
James Baker
James E McClure
James O'Donnell
James Tocknell
Janoš Vidali
Jeffrey Oliver
Jeremy Teitelbaum
Jeyashree Krishnan
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Nora McGregor
Oscar Arbeláez
Peace Ossom Williamson
Raniere Silva
Rayna Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Ryan Wick
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Shari Laster
Simon Waldman
Stefan Siegert
Thea Atwood
Thomas Morrell
Tim Dennis
Tommy Keswick
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
William Sacks
Wolmar Nyberg Åkerström
Yuri
abracarambar
ajtag
butterflyskip
cmjt
hdinkel
jonestoddcm
pllim
Date Added:
08/07/2020
Plotting and Programming in Python
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is part of Software Carpentry workshops and teach an introduction to plotting and programming using python. This lesson is an introduction to programming in Python for people with little or no previous programming experience. It uses plotting as its motivating example, and is designed to be used in both Data Carpentry and Software Carpentry workshops. This lesson references JupyterLab, but can be taught using a regular Python interpreter as well. Please note that this lesson uses Python 3 rather than Python 2.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Steer
Allen Lee
Andreas Hilboll
Ashley Champagne
Benjamin
Benjamin Roberts
CanWood
Carlos Henrique Brandt
Carlos M Ortiz Marrero
Cephalopd
Cian Wilson
Dan Mønster
Daniel W Kerchner
Daria Orlowska
Dave Lampert
David Matten
Erin Alison Becker
Florian Goth
Francisco J. Martínez
Greg Wilson
Jacob Deppen
Jarno Rantaharju
Jeremy Zucker
Jonah Duckles
Kees den Heijer
Keith Gilbertson
Kyle E Niemeyer
Lex Nederbragt
Logan Cox
Louis Vernon
Lucy Dorothy Whalley
Madeleine Bonsma-Fisher
Mark Phillips
Mark Slater
Maxim Belkin
Michael Beyeler
Mike Henry
Narayanan Raghupathy
Nigel Bosch
Olav Vahtras
Pablo Hernandez-Cerdan
Paul Anzel
Phil Tooley
Raniere Silva
Robert Woodward
Ryan Avery
Ryan Gregory James
SBolo
Sarah M Brown
Shyam Dwaraknath
Sourav Singh
Steven Koenig
Stéphane Guillou
Taylor Smith
Thor Wikfeldt
Timothy Warren
Tyler Martin
Vasu Venkateshwaran
Vikas Pejaver
ian
mzc9
Date Added:
08/07/2020
Programming with Python
Unrestricted Use
CC BY
Rating
0.0 stars

The best way to learn how to program is to do something useful, so this introduction to Python is built around a common scientific task: data analysis. Arthritis Inflammation We are studying inflammation in patients who have been given a new treatment for arthritis, and need to analyze the first dozen data sets of their daily inflammation. The data sets are stored in comma-separated values (CSV) format: each row holds information for a single patient, columns represent successive days. The first three rows of our first file look like this: 0,0,1,3,1,2,4,7,8,3,3,3,10,5,7,4,7,7,12,18,6,13,11,11,7,7,4,6,8,8,4,4,5,7,3,4,2,3,0,0 0,1,2,1,2,1,3,2,2,6,10,11,5,9,4,4,7,16,8,6,18,4,12,5,12,7,11,5,11,3,3,5,4,4,5,5,1,1,0,1 0,1,1,3,3,2,6,2,5,9,5,7,4,5,4,15,5,11,9,10,19,14,12,17,7,12,11,7,4,2,10,5,4,2,2,3,2,2,1,1 Each number represents the number of inflammation bouts that a particular patient experienced on a given day. For example, value “6” at row 3 column 7 of the data set above means that the third patient was experiencing inflammation six times on the seventh day of the clinical study. So, we want to: Calculate the average inflammation per day across all patients. Plot the result to discuss and share with colleagues. To do all that, we’ll have to learn a little bit about programming.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anne Fouilloux
Lauren Ko
Maxim Belkin
Trevor Bekolay
Valentina Staneva
Date Added:
08/07/2020
Version Control with Git
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is part of the Software Carpentry workshops that teach how to use version control with Git. Wolfman and Dracula have been hired by Universal Missions (a space services spinoff from Euphoric State University) to investigate if it is possible to send their next planetary lander to Mars. They want to be able to work on the plans at the same time, but they have run into problems doing this in the past. If they take turns, each one will spend a lot of time waiting for the other to finish, but if they work on their own copies and email changes back and forth things will be lost, overwritten, or duplicated. A colleague suggests using version control to manage their work. Version control is better than mailing files back and forth: Nothing that is committed to version control is ever lost, unless you work really, really hard at it. Since all old versions of files are saved, it’s always possible to go back in time to see exactly who wrote what on a particular day, or what version of a program was used to generate a particular set of results. As we have this record of who made what changes when, we know who to ask if we have questions later on, and, if needed, revert to a previous version, much like the “undo” feature in an editor. When several people collaborate in the same project, it’s possible to accidentally overlook or overwrite someone’s changes. The version control system automatically notifies users whenever there’s a conflict between one person’s work and another’s. Teams are not the only ones to benefit from version control: lone researchers can benefit immensely. Keeping a record of what was changed, when, and why is extremely useful for all researchers if they ever need to come back to the project later on (e.g., a year later, when memory has faded). Version control is the lab notebook of the digital world: it’s what professionals use to keep track of what they’ve done and to collaborate with other people. Every large software development project relies on it, and most programmers use it for their small jobs as well. And it isn’t just for software: books, papers, small data sets, and anything that changes over time or needs to be shared can and should be stored in a version control system.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander G. Zimmerman
Amiya Maji
Amy L Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Ben Bolker
Bill Sacks
Brian Moore
Casey Youngflesh
Charlotte Moragh Jones-Todd
Christoph Junghans
David Jennings
Erin Alison Becker
François Michonneau
Garrett Bachant
Grant Sayer
Holger Dinkel
Ian Lee
Jake Lever
James E McClure
James Tocknell
Janoš Vidali
Jeremy Teitelbaum
Jeyashree Krishnan
Jimmy O'Donnell
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Oscar Arbeláez
Peace Ossom Williamson
Pey Lian Lim
Raniere Silva
Rayna Michelle Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Simon Waldman
Stefan Siegert
Thomas Morrell
Tommy Keswick
Traci P
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
Wolmar Nyberg Åkerström
abracarambar
butterflyskip
jonestoddcm
Date Added:
03/20/2017