After having learned about earthquakes in class, through readings and earlier lab …
After having learned about earthquakes in class, through readings and earlier lab assignments, students (in groups of two) are asked to design and construct (using balsa wood, string, paper and glue) a three-story building designed to minimize the effects of shear-wave vibrations that occur during an earthquake. The students are required to research the design concepts on their own and most of the construction work occurs outside of the regular laboratory period. The structures are tested for strength a week before the earthquake occurs - can they support the required load for each floor? On earthquake day, the buildings a tested for a "design earthquake" and then each group is given the opportunity to see how "large" and earthquake their structure can withstand - both in terms of frequency and amplitude variations. In addition to building the structure, each team has to submit a paper reflecting on why they designed and built the structure the way they did.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Half way through the second semester of our year-long integrated Sed/Strat and …
Half way through the second semester of our year-long integrated Sed/Strat and Structure course we travel to Sheep Mountain, Wyoming where the students spend 5 days describing and measuring section and the constructing geologic and structural maps. The field data gathered then form the basis for a paper titled: "Geologic History of the Sheep Mountain Region". In addition to simply making geologic maps, stratigraphic sections and structural cross-sections, the students have to put the local geology into the broader contexts of the Big Horn Basin and sequences of western orogenies.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The purpose of this gravity/magnetic mapping project is to have the students …
The purpose of this gravity/magnetic mapping project is to have the students conduct a research/consulting project from start to finish. They are expected to design the project (submit a proposal), implement (collect data) the proposal, process the data, analyze and interpret the results and report their findings. Working in teams, they have to budget their time, assign tasks and get the job done on time. The process is as important as the science, however they have make quality assessments of the data they have collected and justify their interpretation of the data using accepted scientific/geologic principles. Uses geophysics to solve problems in other fields
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Working in teams, the students begin by conducting a vertical resistivty sounding …
Working in teams, the students begin by conducting a vertical resistivty sounding to determine the depth to the water table. This can be checked because the survey is done in the middle of an existing well field. Using the depth determined, the students then conduct the equivalent of horizontal resistivity survey using a fixed "a" spacing. Instead of making a map they collect data at 10-degree intervals rotating the array around a central point. This provides them with information about how the resistivity varies with magnetic bearing and they then have to relate that to an interpretation of the local structure (fracture patterns). Each student has to submit an individual report which includes an interpretation of the data. Uses geophysics to solve problems in other fields
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.