Updating search results...

Search Resources

2 Results

View
Selected filters:
Análisis y visualización de datos usando Python
Unrestricted Use
CC BY
Rating
0.0 stars

Python es un lenguaje de programación general que es útil para escribir scripts para trabajar con datos de manera efectiva y reproducible. Esta es una introducción a Python diseñada para participantes sin experiencia en programación. Estas lecciones pueden enseñarse en un día (~ 6 horas). Las lecciones empiezan con información básica sobre la sintaxis de Python, la interface de Jupyter Notebook, y continúan con cómo importar archivos CSV, usando el paquete Pandas para trabajar con DataFrames, cómo calcular la información resumen de un DataFrame, y una breve introducción en cómo crear visualizaciones. La última lección demuestra cómo trabajar con bases de datos directamente desde Python. Nota: los datos no han sido traducidos de la versión original en inglés, por lo que los nombres de variables se mantienen en inglés y los números de cada observación usan la sintaxis de habla inglesa (coma separador de miles y punto separador de decimales).

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alejandra Gonzalez-Beltran
April Wright
Christopher Erdmann
Enric Escorsa O'Callaghan
Erin Becker
Fernando Garcia
Hely Salgado
Juan M. Barrios
Juan Martín Barrios
Katrin Leinweber
LUS24
Laura Angelone
Leonardo Ulises Spairani
Maxim Belkin
Miguel González
Nicolás Palopoli
Nohemi Huanca Nunez
Paula Andrea Martinez
Raniere Silva
Rayna Harris
Sarah Brown
Silvana Pereyra
Spencer Harris
Stephan Druskat
Trevor Keller
Wilson Lozano
chekos
monialo2000
rzayas
Date Added:
08/07/2020
R para Análisis Científicos Reproducibles
Unrestricted Use
CC BY
Rating
0.0 stars

Una introducción a R utilizando los datos de Gapminder. El objetivo de esta lección es enseñar a las programadoras principiantes a escribir códigos modulares y adoptar buenas prácticas en el uso de R para el análisis de datos. R nos provee un conjunto de paquetes desarrollados por terceros que se usan comúnmente en diversas disciplinas científicas para el análisis estadístico. Encontramos que muchos científicos que asisten a los talleres de Software Carpentry utilizan R y quieren aprender más. Nuestros materiales son relevantes ya que proporcionan a los asistentes una base sólida en los fundamentos de R y enseñan las mejores prácticas del cómputo científico: desglose del análisis en módulos, automatización tareas y encapsulamiento. Ten en cuenta que este taller se enfoca en los fundamentos del lenguaje de programación R y no en el análisis estadístico. A lo largo de este taller se utilizan una variedad de paquetes desarrolados por terceros, los cuales no son necesariamente los mejores ni se encuentran explicadas todas sus funcionalidades, pero son paquetes que consideramos útiles y han sido elegidos principalmente por su facilidad de uso.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
A. s
Alejandra Gonzalez-Beltran
Ana Beatriz Villaseñor Altamirano
Antonio
AntonioJBT
Belinda Weaver
Claudia Engel
Cynthia Monastirsky
Daniel Beiter
David Mawdsley
David Pérez-Suárez
Erin Becker
EuniceML
François Michonneau
Gordon McDonald
Guillermina Actis
Guillermo Movia
Hely Salgado
Ido Bar
Ivan Ogasawara
Ivonne Lujano
James J Balamuta
Jamie McDevitt-Irwin
Jeff Oliver
Jonah Duckles
Juan M. Barrios
Katrin Leinweber
Kevin Alquicira
Kevin Martínez-Folgar
Laura Angelone
Laura-Gomez
Leticia Vega
Marcela Alfaro Córdoba
Marceline Abadeer
Maria Florencia D'Andrea
Marie-Helene Burle
Marieke Frassl
Matias Andina
Murray Cadzow
Narayanan Raghupathy
Naupaka Zimmerman
Paola Prieto
Paula Andrea Martinez
Raniere Silva
Rayna M Harris
Richard Barnes
Richard McCosh
Romualdo Zayas-Lagunas
Sandra Brosda
Sasha Lavrentovich
Shirley Alquicira Hernandez
Silvana Pereyra
Tobin Magle
Veronica Jimenez
juli arancio
raynamharris
saynomoregrl
Date Added:
08/07/2020