Updating search results...

Search Resources

5 Results

View
Selected filters:
Data Analysis and Visualization in R for Ecologists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson from Ecology curriculum to learn how to analyse and visualise ecological data in R. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with ecology data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from R.

Subject:
Applied Science
Computer Science
Ecology
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ankenbrand, Markus
Arindam Basu
Ashander, Jaime
Bahlai, Christie
Bailey, Alistair
Becker, Erin Alison
Bledsoe, Ellen
Boehm, Fred
Bolker, Ben
Bouquin, Daina
Burge, Olivia Rata
Burle, Marie-Helene
Carchedi, Nick
Chatzidimitriou, Kyriakos
Chiapello, Marco
Conrado, Ana Costa
Cortijo, Sandra
Cranston, Karen
Cuesta, Sergio Martínez
Culshaw-Maurer, Michael
Czapanskiy, Max
Daijiang Li
Dashnow, Harriet
Daskalova, Gergana
Deer, Lachlan
Direk, Kenan
Dunic, Jillian
Elahi, Robin
Fishman, Dmytro
Fouilloux, Anne
Fournier, Auriel
Gan, Emilia
Goswami, Shubhang
Guillou, Stéphane
Hancock, Stacey
Hardenberg, Achaz Von
Harrison, Paul
Hart, Ted
Herr, Joshua R.
Hertweck, Kate
Hodges, Toby
Hulshof, Catherine
Humburg, Peter
Jean, Martin
Johnson, Carolina
Johnson, Kayla
Johnston, Myfanwy
Jordan, Kari L
K. A. S. Mislan
Kaupp, Jake
Keane, Jonathan
Kerchner, Dan
Klinges, David
Koontz, Michael
Leinweber, Katrin
Lepore, Mauro Luciano
Li, Ye
Lijnzaad, Philip
Lotterhos, Katie
Mannheimer, Sara
Marwick, Ben
Michonneau, François
Millar, Justin
Moreno, Melissa
Najko Jahn
Obeng, Adam
Odom, Gabriel J.
Pauloo, Richard
Pawlik, Aleksandra Natalia
Pearse, Will
Peck, Kayla
Pederson, Steve
Peek, Ryan
Pletzer, Alex
Quinn, Danielle
Rajeg, Gede Primahadi Wijaya
Reiter, Taylor
Rodriguez-Sanchez, Francisco
Sandmann, Thomas
Seok, Brian
Sfn_brt
Shiklomanov, Alexey
Shivshankar Umashankar
Stachelek, Joseph
Strauss, Eli
Sumedh
Switzer, Callin
Tarkowski, Leszek
Tavares, Hugo
Teal, Tracy
Theobold, Allison
Tirok, Katrin
Tylén, Kristian
Vanichkina, Darya
Voter, Carolyn
Webster, Tara
Weisner, Michael
White, Ethan P
Wilson, Earle
Woo, Kara
Wright, April
Yanco, Scott
Ye, Hao
Date Added:
03/20/2017
Engineering Design for Circular Economy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products.

The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course.

Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R.

This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
David Peck
Dr. A. Lohrengel
Dr. E. van der Voet
Drs. Max Prumbohm
Date Added:
02/21/2019
MOOC: Critical Raw Materials: Managing Resources for a Sustainable Future
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Gain a systemic understanding of critical raw materials and learn about strategies and solutions to manage them in a sustainable way.

Subject:
Applied Science
Business and Communication
Economics
Engineering
Environmental Science
Management
Social Science
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Alessandra Hool
David Peck
Ester van der Voet
Date Added:
06/07/2023
Pathology Case Study: A 7 week old male with ambiguous genitalia and history of Hirschprung disease
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

(This case study was added to OER Commons as one of a batch of over 700. It has relevant information which may include medical imagery, lab results, and history where relevant. A link to the final diagnosis can be found at the end of the case study for review. The first paragraph of the case study -- typically, but not always the clinical presentation -- is provided below.)

A seven month old male with a history of ambiguous genitalia and Hirschprung disease presented for follow up evaluation. He was born via normal spontaneous vaginal delivery at 39 weeks to a grava 4 para 3 mother with one previous miscarriage. The pregnancy was uneventful. The physical exam was remarkable for ambiguous genitalia, mildly low set posteriorly rotated ears, and syndactyly of the second and third toes bilaterally. He initially experienced bilious emesis and feeding intolerance and improved secondary to a leveling colostomy and partial colon resection.

Subject:
Applied Science
Education
Health, Medicine and Nursing
Life Science
Material Type:
Case Study
Diagram/Illustration
Provider:
University of Pittsburgh School of Medicine
Provider Set:
Department of Pathology
Author:
David Finegold
Matthew A Smith
Octavia Peck-Palmer
Date Added:
08/01/2022
Waste Management and Critical Raw Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can we ensure the continuous supply of the increasingly scarce raw materials that are needed to make the products we use every day? In this course, we will look at the potential benefits of circular procurement and how recycling technologies and more efficient ways of collecting and recycling critical raw materials (CRMs) can make your business and production more resource resilient.

A good number of the materials found in everyday products are now referred to as “critical”. This means that there is a risk of failure in their supply and that they are also critical in terms of economic importance.

Many metals, for instance, are already critical or could become critical in the near future due to their limited availability and the growing demand for products worldwide. Think of the newest electronic products that contain critical metals such as gallium, which is used in integrated circuits; beryllium, used in electronic and telecommunications equipment and permanent magnets and germanium found in infra-red optics.

Innovative product design and reusing, recycling and remanufacturing products can help to deal with a raw materials shortage. But this can only provide an integrated solution if we keep CRMs in the loop through smarter CRM management. The starting point is to identify CRMs in products. It is not always clear what materials are in which products. It is, therefore, necessary to keep all metals in the loop for as long as possible.

Scarcity in the supply chain can not only damage businesses but also negatively impact economic development and the environment. For this reason, the course will also discuss environmental issues and electric and electronic waste regulations.

This course will be of value to a wide range of professionals working in or interested in this field. These include professionals involved in producing products containing CRMs (such as electronics) as well as local or national government officials tasked with organizing waste management and recycling for these products. Students interested in the field of waste management will also find this course helpful for their studies in electronics, industrial design, and industrial ecology.

Subject:
Career and Technical Education
Environmental Studies
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
David Peck
Ir. J.H. Welink
Date Added:
08/16/2019