In this laboratory exercise students create a fence diagram cross section of …
In this laboratory exercise students create a fence diagram cross section of the Atlantic Coastal Plain by correlating a sequence of well logs recorded along a NW -- SE transect through coastal North Carolina. The well logs in this exercise are based on actual well logs published by the United States Geological Survey, providing a realistic cross section of the Atlantic Coastal Plain when the exercise is completed. Students must make intelligent decisions as to how best to draw lithostratigraphic correlations between well logs, guided by information provided by biostratigraphic correlations. After completing this lab, students should have a better understanding of how strata are deposited in time and space under the control of transgressions and regressions, how geologists correlate strata, and they should be able to recognize disconformities and angular unconformities in cross sections.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
By measuring the spacing of fossil footprints it is possible to estimate …
By measuring the spacing of fossil footprints it is possible to estimate the speed of the trackmaker, but only after making several assumptions based on footprint size and the behavior of a wide range of living animals. A widely applied method for estimating speed from trackways was developed through the research of R. McNeill Alexander, an expert in biomechanics. This lab is a group exercise designed to lead students step-by-step through the methods and principles involved in estimating speed of movement from trackway data using Alexander's method. First students test the method on humans to see how accurate it is, and then they apply it to measurements taken from a variety of dinosaur trackways. This activity involves having students collect speed and footprint data on subjects while they are running and walking. The footprint data are analyzed and the speed estimates are compared to the actual measured speeds. Students then collect trackway measurements from published illustrations of dinosaur trackways to estimate dinosaur speeds. Students calculate the percent error for their experimental estimates and use this to interpret the results obtained from dinosaur trackways. Spreadsheets may be used to record and carry out the calculations in the analysis. Students are asked to discuss the significance of their results to ongoing debates over the physical capabilities of dinosaurs.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students are given a short introduction to fossils, strata, Steno's law of …
Students are given a short introduction to fossils, strata, Steno's law of superposition, and the development of the geologic time scale from initial description of systems, through the realization that fossils could be used to correlate between systems, to the assembly of the modern geologic time scale. Then, each student in the course is given a sheet of paper with a simple stratigraphic column and associated fossils representing a geologic system on one side and a short description of the location and history of discovery of the system on the other. On a large wall, students then assemble four geologic columns from their systems representing mainland Europe, Great Britain, the Eastern U.S. and the Western U.S. using the fossils illustrated on their sheets to correlate systems. The instructor guides this process by placing the first system on the wall and by providing some narration as the columns take shape. Europe and Great Britain are assembled first, one sheet at a time, providing when completed the framework of the modern geologic time scale. Once this is up on the wall, the remaining students can assemble the other two columns in minutes using fossils to correlate between American and European systems. A temporal gap in the Grand Canyon sequence provides an opportunity to discuss the incompleteness of the rock record in any one place and a system composed of igneous and metamorphic rocks with no fossils is used to point out the difference between radiometric (absolute) and biostratigraphic (relative) dating.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.