This document is intended to provide practical guidelines for researchers to follow …
This document is intended to provide practical guidelines for researchers to follow when examining their data for missingness and making decisions about how to handle that missingness. We primarily offer recommendations for multiple imputation, but also indicate where the same decisional guidelines are appropriate for other types of missing data procedures such as full information maximum likelihood (FIML). Streamlining procedures to address missing data and increasing the transparency of those procedures through consensus on reporting standards is inexorably linked to the goals of open scholarship (i.e., the endeavour to improve openness, integrity, social justice, diversity, equity, inclusivity and accessibility in all areas of scholarly activities, and by extension, academic fields beyond the sciences and academic activities; Pownall et al., 2021). Successfully implementing transparent and accessible guidelines for addressing missing data is also important for Diversity, Equity, Inclusion, and Accessibility (DEIA) improvement efforts (Randall et al., 2021). Structural barriers to participation in research can lead to participants from minoritized groups disproportionately dropping out of longitudinal, developmental studies or not completing measures (Randall et al., 2021). This selection effect can bias model estimates and confidence intervals, leading to unsubstantiated claims about equitable outcomes. In addition to often creating artificially small estimates of inequalities between groups, listwise deletion also limits statistical power for minoritized groups who are already underrepresented in many datasets.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.